首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=xixj. (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式; (2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=xixj. (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式; (2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
admin
2021-11-15
25
问题
设A为n阶实对称可逆矩阵,f(x
1
,x
2
,…,x
n
)=
x
i
x
j
.
(1)记X=(x
1
,x
2
,…,x
n
)
T
,把二次型f(x
1
,x
2
,…,x
n
)写成矩阵形式;
(2)二次型g(x)=X
T
AX是否与f(x
1
,x
2
,…,x
n
)合同?
选项
答案
(1)f(X)=(x
1
,x
2
,…,x
n
)
T
[*] 因为r(A)=n,所以|A|≠0,于是(1/|A|)A
*
=A
-1
,显然A
*
,A
-1
都是实对称矩阵. (2)因为A可逆,所以A的n个特征值都不是零,而A与A
-1
合同,故二次型f(x
1
,x
2
,…,x
n
)与g(X)=X
T
AX规范合同.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sly4777K
0
考研数学二
相关试题推荐
下列说法正确的是()。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设A为m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()。
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A的其他特征值与特征向量。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
设二次型,经过正交变换X=QY化为标准形,求参数a,b及正交矩阵Q.
设A为3阶实对称矩阵,α1=(1,﹣1,﹣1)T,α2=(﹣2,1,0)T是齐次线性方程Ax=0的基础解系,且矩阵A-6E不可逆,则(Ⅰ)求齐次线性方程组(A-6E)x=0的通解;(Ⅱ)求正交变换x=Qy将二次型xTAx化为标准形;(Ⅲ)求(A-3E
(1)设n元实二次型f(x1,x2,…,x3)=xTAx,其中A又特征值λ1,λ2,…,λn,且满足λ1≤λ2≤…≤λn.证明对任何n维列向量x,有λ1xTx≤λ2xTx≤…≤λnxTx.(2)设f(x1,x2,x3)=(x1,x2,x3)=xTAx
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
随机试题
A、detectnearbyobjectsB、determinethedepthoftheoceanwaterC、decidehowfastyoudriveD、inneedofradarE、maptheocean
颈外动脉面神经颞支
大量腹水时不应出现的体征为
甲(女)因恨男友乙负情而产生杀男友乙的念头,但恐力单不敌男友,故计划诱男友服安眠药熟睡时,再用刀将其刺杀。某闩甲将男友乙诱到甲自己家中劝其服下安眠药致其熟睡,不料乙另一女友找来,与甲发生争吵厮打,并将熟睡的乙打醒拖走。对甲应当如何处罚?
在深圳证券交易所,权益类证券大宗交易、债券大宗交易(除公司债券外),协议平台的成交确认时间为每个交易日的()。
提出语文课程是一门学习语言文字运用的综合性、实践性课程,强调工具性与人文性的统一是语文课程的基本特点,是出自下列哪个文件中的要求?()
以下属于人格测验中存在的问题的是()
Whatdoesthemanlearnaboutthelibrary?
Whatcomesnext?
HowtoUseaLibraryA)You’redrivingyourcarhomefromworkorschool.Andsomethinggoeswrong.Theenginestallsoutatligh
最新回复
(
0
)