首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)﹦x12﹢x22﹢x32-2x1x2-2x1x3﹢2ax2x3通过正交变换化为标准形f﹦2y12﹢2y22﹢by32。 (I)求常数a,b及所用的正交变换矩阵Q; (Ⅱ)求f在xTx﹦3下的最大值。
设二次型f(x1,x2,x3)﹦x12﹢x22﹢x32-2x1x2-2x1x3﹢2ax2x3通过正交变换化为标准形f﹦2y12﹢2y22﹢by32。 (I)求常数a,b及所用的正交变换矩阵Q; (Ⅱ)求f在xTx﹦3下的最大值。
admin
2022-10-13
50
问题
设二次型f(x
1
,x
2
,x
3
)﹦x
1
2
﹢x
2
2
﹢x
3
2
-2x
1
x
2
-2x
1
x
3
﹢2ax
2
x
3
通过正交变换化为标准形f﹦2y
1
2
﹢2y
2
2
﹢by
3
2
。
(I)求常数a,b及所用的正交变换矩阵Q;
(Ⅱ)求f在x
T
x﹦3下的最大值。
选项
答案
(I)由题意得,二次型矩阵及其对应的标准形矩阵分别为 [*] 由矩阵B可知,矩阵A的特征值为2,2,b。矩阵A的迹tr(A)﹦3﹦2﹢2﹢6,所以b﹦-1。 由于2是矩阵A的二重特征值,而实对称矩阵A必可相似对角化,所以矩阵A的对应于特征值2的线性无关的特征向量有2个。于是矩阵A-2E的秩为1,而 [*] 所以a﹦-1。 由(A-λE)x﹦0得,特征值为λ
1
﹦λ
2
﹦2,λ
3
﹦-1,对应的特征向量分别为 α
1
﹦(1,0,-1)
T
,α
2
﹦(0,1,-1)
T
,α
3
﹦(1,1,1)
T
, 由于实对称矩阵属于不同特征值的特征向量正交,所以只需将α
1
,α
2
正交化得 [*] 再将β
1
,β
2
,α
3
单位化得 [*] 则正交变换矩阵为[*] (Ⅱ)二次型f﹦x
T
Ax在正交变换X﹦Qy,下的标准形为f﹦2y
1
2
﹢2y
2
2
-y
3
2
。条件x
T
x﹦3等价于y
T
Q
2
Qy﹦y
1
2
﹢y
2
2
﹢y
3
2
﹦3;此时f﹦2y
1
2
﹢2y
2
2
-y
3
2
﹦6-3y
3
2
的最大值为6,所以f在x
T
x﹦3的条件下的最大值为6。 本题考查二次型的正交变换。考生可由题干给出的标准形得出二次型矩阵的特征值,进而由二次型矩阵及其对应的标准形矩阵的性质得到常数a,b的值。考生可由矩阵的特征方程解得矩阵的特征向量,对特征向量正交化、单位化,即可求出所用的正交变换矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/Sne4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
设A=,求正交矩阵P使得P﹣1AP=.
设A=,P=,B=P﹣1AP,求A100.
已知二次型f(x1,x2,x3)=5x12+5x22+ax32-2x1x2+6x1x3-6x2x3的秩为2.(1)求参数a以及此二次型对应矩阵的特征值;(2)(数学一)指出方程f(x1,x2,x3)=1表示何种二次曲面.
下面四个随机变量的分布中,期望值最大,方差最小的是().
设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求Z=X+Y的密度函数fz(z).
计算(sinx+y2)dxdy,其中平面区域D由直线x=一2,x=2,y=0与曲线(一2≤x≤2)围成.
设曲线L是柱面x2+y2=1与平面x—y+z=2的交线,从z轴正向往z轴负向看去为逆时针方向,则曲线积分(z—y)dx+(x—z)dy+(x一y)dz=_______.
随机试题
(2021年聊城茌平区)_______是人脑对客观现实的主观能动的反应。
ResalePriceMaintenanceisthenameusedwhenaretaileriscompelledtosellatapricefixedbythemanufacturerinsteadofc
茶艺师职业守则为()和钻研业务,精益求精。
下列各句中,加下划线的成语使用恰当的一句是()
应用定量资料,需要从下列哪方面进行评价
下列哪些票据丧失以后允许挂失止付()
中华民族传统体育是中国体育事业的重要组成部分。下列关于传统体育项目的说法,不正确的是()。
事物发生质变的两种基本形式是( )
Windows98中,可以安装3种类型的网络服务软件,它们分别是Microsoft网络上的文件与打印机共享、NetWare网络上的文件与打印机共享,以及NetWare______。
A、Shedoesn’tlikeherclass.B、Shedoesn’thavetimetotalk.C、Shehastogetupevenearlier.D、Shehatestakingpublictrans
最新回复
(
0
)