首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置. 证明: A2=A的充要条件是ξTξ=1;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置. 证明: A2=A的充要条件是ξTξ=1;
admin
2014-06-15
80
问题
设A=E-ξξ
T
,其中层为n阶单位矩阵,ξ是n维非零列向量,ξ
T
是ξ的转置.
证明:
A
2
=A的充要条件是ξ
T
ξ=1;
选项
答案
A
2
=(E-ξξ
T
)(E-ξξ
T
)=E-2ξξ
T
+ξξ
T
ξξ
T
=E-ξξ
T
+ξ(ξ
T
ξ)ξ
T
-ξξ
T
=A+(ξ
T
ξ)ξξ
T
-ξξ
T
, 那么A
2
=A≡(ξ
T
ξ-1)ξξ
T
=0. 因为ξ是非零列向量,ξξ
T
≠0,故A
2
=A≡ξ
T
ξ-1=0即ξ
T
ξ=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/gJ34777K
0
考研数学二
相关试题推荐
曲线的渐近线的条数为()。
设y=y(x)由确定,则=________。
设抛物线y=x2与它的两条相互垂直的切线所围成的平面图形的面积记为S,其中一条切线与抛物线相切于点A(a,a2)(a>0)。(Ⅰ)求S=SA的表达式;(Ⅱ)当a取何值时,面积SA最小?
计算,其中D={(x,y)|-1≤x≤1,0≤y≤1}。
设X~N(1,4),Y~N(3,16),P{Y=aX+b}=1,且P4=-1,则()。
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=________。
设α1,α2,α3,α4为4维列向量组,其中α1,α2,α1线性尤关,α4=α1+α2+2α3,记A=(α1-α2,α2+α3,-α1+α2+α3),且方程组Ax=α4有无穷多解,求:(1)常数a的值;(2)方程组Ax=α4的通解。
设f1(x)为标准正态分布的概率密度,f2(x)为[-1,1]上均匀分布的概率密度,若随机变量X的概率密度为f(x)=(a>0,b>0),且P{X>0}=-1/4,则E(X2)=________。
(2011年试题,一(8))设A=(α1,α2,α3,α4)是四阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)是方程组Ax=0的—个基础解系,则A*x=0的基础解系可为().
证明,,其中n为自然数.
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)