首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=,验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使得f(2)一f(0)=2f’(ξ)成立的ξ。
设f(x)=,验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使得f(2)一f(0)=2f’(ξ)成立的ξ。
admin
2016-09-30
66
问题
设f(x)=
,验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使得f(2)一f(0)=2f’(ξ)成立的ξ。
选项
答案
由f(1—0)=f(1)=f(1+0)=1得f(x)在x=1处连续,从而f(x)在[0,2]上连续. [*] 得f(x)在x=1处可导且f’(1)=一1,从而f(x)在(0,2)内可导, 故f(x)在[0,2]上满足拉格朗日中值定理的条件. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ssu4777K
0
考研数学一
相关试题推荐
k≠1
设二二次型f(x1,x2,x3)=xTAx=3x12+ax22+3x32一4x1x2—8x1x3—4x2x3,其中一2是二次型矩阵A的一个特征值。(Ⅰ)试用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
已知y=x2+a与y=b㏑(1+2x)在x=1点相切(两曲线在(x。,y。)处相切是指它们在(x。,y。)处有共同切线),求a,b的值.
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
设z=z(x,y)是由x2-6xy+10y2-2yz-z2+18=0确定的函数,z=z(x,y)的极值点_____________和极值___________.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0),汽锤第一次击打将桩打进地下a(m).根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作
(2001年试题,一)交换二次积分的积分次序:=____________.
设曲线y=y(x)位于第一卦限且在原点处的切线与x轴相切,P(x,y)为曲线上任一点,该点与原点之间的弧长为l1,点P处的切线与y轴交于点A,点A,P之间的距离为l2,又满足x(3l1+2)=2(x+1)l2,求曲线y=y(x)
随机试题
Butforyourhelp,I______inthisexamination.
急性机械性小肠梗阻,不常见的症状是
昏睡的主要临床特点是
甲国A公司(买方)与乙国B公司(卖方)签订一进口茶叶合同,价格条件为CFR,装运港的检验证书作为议付货款的依据,但约定买方在目的港有复验权。货物在装运港检验合格后交由C公司运输。由于乙国当时发生疫情,船舶到达甲国目的港外时,甲国有关当局对船舶进行了熏蒸消毒
对于屋外管母线,下列哪几项消除微风振动的措施是无效的?
下图为我国援建某国的港口工程,该港区的波浪玫瑰图各方向频率的径向长度比见图示,如下表所列:问题:NNW向波高≥1m的波浪出现的频率是多少?
《注册建造师管理规定》规定,下列不属于不予注册的法定情形的是()。
在香港,曾经有过一场激烈无比的洋酒倾销战。经过1年的激战之后,英国的“威士忌”只卖了17.5万瓶,法国的“白兰地”却卖了350万瓶。白兰地遥遥领先,是威士忌的20倍。在日本,英国“威士忌”的销售量大约是法国“白兰地”的2倍,在别的国家情况也大致相同。而且威
2013年11月12日,中国共产党十八届三中全会审议通过了《中共中央关于全面深化改革若干重大问题的决定》。《决定》集中全党智慧,顺应人民意愿,是对全面深化改革进行总体部署的纲领性文件,是为赢得战略机遇、实现可持续发展作出的重大决策。中央政治局决定高举中国特
Atthispoint,mostofusgenerallyhaveaclueaboutthebasicsofstayingingoodhealth—eatwell,exercise,don’tdrinktoom
最新回复
(
0
)