首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α=[1,1,1]T是二次型+2x1x2+2bx1x3+2x2x3矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
已知α=[1,1,1]T是二次型+2x1x2+2bx1x3+2x2x3矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
admin
2020-02-27
107
问题
已知α=[1,1,1]
T
是二次型
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
选项
答案
二次型矩阵是 [*] 设α是属于特征值λ
0
的特征向量,即A
1
α=λ
0
α,或 [*] 由此可得 [*] 易解出 λ
0
=3,b=0,a=2. 对于[*],由于|A
1
|=0,所以f不是正定二次型. 将a=2,b=0代入方程组,对系数矩阵作初等行变换化为行阶梯形矩阵: [*] 当c=6时,对B进一步用初等行变换化为含最高阶单位矩阵的矩阵,得到 [*] 则A
2
X=0的一个基础解系含2个解向量: α
1
=[一9,19,一7,1,0]
T
, α
2
=[2,一7,2,0,1]
T
, 其通解为X=k
1
α
1
+k
2
α
2
,k
1
,k
2
为任意常数. 当c≠6即c-6≠0时,矩阵B用初等行变换进一步可化为含最高阶单位矩阵的矩阵: [*] 这时方程组A
2
X=0的基础解系只含一个解向量: [一(3c一10)/14,一(23-2c)/7,0,一(c一8)/7,7]
T
. 为方便计,取 α
3
=[一(3c一10)/2,一(23—2c),0,一(c一8),49]
T
=[5—3c/2,2c一23,0,(8一c),49]
T
. 故当c≠6时,方程组A
2
X=0的通解为k
3
α
3
,其中k
3
为任意常数.
解析
写出二次型矩阵A,由题设条件列出方程易求得a、b和α的特征值λ
0
.然后再将所给齐次方程组的系数矩阵用初等行变换化为含最高阶单位矩阵的矩阵,用基础解系的简便求法即可写出其基础解系及通解.
转载请注明原文地址:https://kaotiyun.com/show/StD4777K
0
考研数学三
相关试题推荐
设A=且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b)使
设y=(a>0,b>0),求y’.
设A为n阶可逆矩阵,则下列等式中,不一定成立的是()
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
设函数在(一∞,+∞)内连续,且,则常数a,b满足()
设随机变量X与Y相互独立,X~B(1,),Y的概率密度f(y)=的值为()
二次型f(x1,x2,x3)=x12+5x22+x32—4x1x2+2x2x3的标准形可以是()
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{|X一μ|<σ}应该()
设cosx-1=xsina(x),其中|a(x)|<π/2,则当x→0时,a(x)是
随机试题
Thebedroomneeds______.
下列忌火煅的药物是( )。
下列甲状腺癌中,出现砂粒体结构的是
评估肝硬化患者有无腹水的最佳方法()。
大型火电厂和大型水泥厂多采用()进行除尘。
某酒厂(增值税一般纳税人)生产粮食白酒,同时也生产啤酒。2019年6月该厂的生产销售情况如下:(1)外购粮食制作的食用酒精,增值税专用发票上注明金额20万元。外购生产白酒的检测仪器,增值税专用发票上注明金额40万元。(2)向农业生产者收
客户信用评级是商业银行对客户()的计量和评价,反映客户()的大小。
已知X,Y是相互正交的n维列向量,证明E+XYT可逆.
下列数据类型的字段能设置索引的有()。
Mostofusthinkofsharksasdangerous,owingtolackofinformationratherthanfear.
最新回复
(
0
)