首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α=[1,1,1]T是二次型+2x1x2+2bx1x3+2x2x3矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
已知α=[1,1,1]T是二次型+2x1x2+2bx1x3+2x2x3矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
admin
2020-02-27
64
问题
已知α=[1,1,1]
T
是二次型
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
选项
答案
二次型矩阵是 [*] 设α是属于特征值λ
0
的特征向量,即A
1
α=λ
0
α,或 [*] 由此可得 [*] 易解出 λ
0
=3,b=0,a=2. 对于[*],由于|A
1
|=0,所以f不是正定二次型. 将a=2,b=0代入方程组,对系数矩阵作初等行变换化为行阶梯形矩阵: [*] 当c=6时,对B进一步用初等行变换化为含最高阶单位矩阵的矩阵,得到 [*] 则A
2
X=0的一个基础解系含2个解向量: α
1
=[一9,19,一7,1,0]
T
, α
2
=[2,一7,2,0,1]
T
, 其通解为X=k
1
α
1
+k
2
α
2
,k
1
,k
2
为任意常数. 当c≠6即c-6≠0时,矩阵B用初等行变换进一步可化为含最高阶单位矩阵的矩阵: [*] 这时方程组A
2
X=0的基础解系只含一个解向量: [一(3c一10)/14,一(23-2c)/7,0,一(c一8)/7,7]
T
. 为方便计,取 α
3
=[一(3c一10)/2,一(23—2c),0,一(c一8),49]
T
=[5—3c/2,2c一23,0,(8一c),49]
T
. 故当c≠6时,方程组A
2
X=0的通解为k
3
α
3
,其中k
3
为任意常数.
解析
写出二次型矩阵A,由题设条件列出方程易求得a、b和α的特征值λ
0
.然后再将所给齐次方程组的系数矩阵用初等行变换化为含最高阶单位矩阵的矩阵,用基础解系的简便求法即可写出其基础解系及通解.
转载请注明原文地址:https://kaotiyun.com/show/StD4777K
0
考研数学三
相关试题推荐
设u=f(x,y,z)有连续的偏导数,y=y(x),z=z(x)分别由方程exy一y=0与ez一xz=0确定,求
设随机变量XNU(0,1),在X=x(0<x<1)下,Y~U(0,x).求X,Y的联合密度函数;
设f(x)在x=a处二阶可导,证明:
函数y=ln(1-2x)在x=0处的n阶导数y(n)(0)=______.
把x→0+时的无穷小量α=cost2dt,β=sint3dt排列起来,使排在后面的是前面一个的高阶无穷小,则正确的排列次序是()
设曲面z=f(x,y)二次可微,且,证明对任给的常数C,f(x,y)=C为一条直线的充要条件是
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ,η∈(a,b),使eη-ξ[f(η)+f’(η)]=1。
设f(x)=|sint|dt,求f(x)的值域。
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2+8x2x3—4x1x3的规范形是__________。
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:存在ξ∈(0,1)使得
随机试题
下列不是绝经后症状的是
关于互斥投资方案比选的说法中,正确的是()。
某外商投资企业专门从事房地产开发业务,纳税年度有关经营情况如下:(1)2月1日与当地建设银行签订借款合同一份,合同记载的借款金额为2000万元,借款期限10个月,还款到期日为11月30日。(2)2月中旬用借款2000万元和自有资金800万元,购得非耕地
吉林省的航空以长春为中心,以()为补充。
醉酒的人违反治安管理的,不予处罚。()
下列所给的选项中,哪一项不能由给定的图形折成?
我国法律规定,国家行政机关因侦查违法犯罪的需要,根据国家有关规定,经过严格的批准手续,可以采取技术侦察措施。()
提起极地冰,很多人眼前总是浮现出一幅洁白无瑕、晶莹剔透的景观。然而,在北纬71°、西经168°附近的北冰洋海域,“雪龙”号首次驶入一片“脏”冰区,只见一块块淡蓝色的浮冰中间夹杂了许多脏兮兮的黄色冰块,这种黄色冰块,既出现在当年的新生冰块上,也出现在多年冰块
Itcanbeinferredfromthepassagethattheauthorwouldmostlikelydescribetheevolutionoffeministliterarytheoryas_____
Oneofthemostpowerfulspiritualawakeningsyoucanhaveistomakepeacewithyourmistakes.Itisalsoaguaranteedwaytobe
最新回复
(
0
)