首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2019-05-14
52
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
η
0
=0,若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sv04777K
0
考研数学一
相关试题推荐
设=0且F可微,证明:=z—xy.
有16件产品,12个一等品,4个二等品,从中任取3个,至少有一个是一等品的概率为_________.
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明:(Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。(Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
设I=,则I,J,K的大小关系是()
将3个球随机地放入4个盒子中,求盒子中球的最多个数分别为1,2,3的概率.
已知α1,α2,α3是非齐次线性方程组3个不同的解,证明:(Ⅰ)α1,α2,α3中任何两个解向量均线性无关;(Ⅱ)如果α1,α2,α3线性相关,则α1-α2,α1-α3线性相关.
设A为3阶矩阵,α1,α2,α3是3维线性无关的列向量,其中α1是齐次方程组Aχ=0的解,又知Aα2=α1+2α2,Aα3=α1-3α2+2α3.(Ⅰ)求矩阵A的特征值与特征向量;(Ⅱ)判断A是否和对角矩阵相似并说明理由;(Ⅲ
设A是m×n矩阵,如果齐次方程组Aχ=0的解全是方程b1χ1+b2χ2+…+bnχn=0的解,证明向量β=(b1,b2,…,bn)可由A的行向量线性表出.
随机试题
关节炎症时引起滑膜液黏稠度减低的原因是
A.知母B.石膏C.栀子D.淡竹叶E.天花粉功能消肿排脓,治疗疮痈肿毒的药物是
善于治霍乱吐泻转筋的药物是
下列选项中,来源于间叶组织的肿瘤是
下列哪些房产免纳房产税?( )
自理报关单位有报关权但没有进出口经营权。
(2010年)企业生产的下列消费品,无需缴纳消费税的是()。
“三清”是道教供奉的至高无上的尊神,其中的“玉清”指的是()。
“中央银行是政府的银行”的含义是指中央银行的产权归属于政府。[对外经济贸易大学2014研]
数据字典是各类数据描述的集合,它通常包括5个部分,即数据项、数据结构、数据流、【】和处理过程。
最新回复
(
0
)