首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2019-05-14
94
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
η
0
=0,若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sv04777K
0
考研数学一
相关试题推荐
计算.
设an=,证明:{an}收敛,并求an.
设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量;(2)求D().
设u=f(x,y,z),其中f(x,y,z)有二阶连续偏导数,z=z(x,y)由方程x2+y2+z2一4z=0所确定,求。
设常数a>,函数f(x)=ex一ax2,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
设f(x)=πx+x2,一π≤x≤π,且f(x)在[一π,π]上的傅里叶级数为(ancosnx+bnsinnx),bn=___________。
已知(X,Y)的联合密度函数(Ⅰ)求常数A;(X,Y)的联合分布函数F(χ,y),并问X与Y是否独立?为什么?(Ⅱ)求条件概率密度fX|Y(χ|y),fY|X(y|χ)及条件概率P{X+Y>1|X<};(Ⅲ)记Z1=Y-X,
求下列极限:
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,Xi,X(n)=max(X1,…,Xn).应用切比雪夫不等式证明:均为θ的一致性(相合性)估计.
(2018年)设L为球面x2+y2+z2=1与平面x+y+z=0的交线,则
随机试题
渗透的科学教育活动包括:日常生活中的科学教育、_______、其他教育活动中的科学教育等。教师要根据活动形式的不同,进行不同程度的指导。
当事人行使不安抗辩权中止履行后,对方在合理期限内()的,视为以自己的行为表明不履行合同主要义务,中止履行的一方可以解除合同并可以请求对方承担违约责任。
不是痰火扰神证的特征是
关于老年人用药A、链霉素B、利血平C、噻嗪类D、可的松类E、吲达帕胺对肾与中枢神经系统有毒性的、应尽量不用、更不可与同类药物联合应用的药品是
下列关于钢筋代换的说法正确的是()。
远期利率______未来短期利率,因为______。( )
以公开间接方式发行股票的特点包括()。
A注册会计师作为XYZ股份有限公司2009年度财务报表审计的项目负责人,正在对助理人员编制的采购与付款循环的有关审计工作底稿进行复核,需要对有关问题作出专业判断。助理人员对采购与付款循环的内部控制进行了了解和测试,下列内部控制中构成重大缺陷的是(
党的十八大报告指出,中国特色社会主义的根本任务是
A、TheIRAaresatisfiedwiththecurrentsituation.B、TheIRAistheillegalmilitaryorganizationfromthebeginning.C、TheBri
最新回复
(
0
)