首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(a1,a2,…an),B=(β1,β2,…βn), AB=(r1,r2,…rn),令向量组 (I):a1,a2,…an;(II):β1,β2,…βn;(III):r1,r2,…rn,若向量组(III)线性相关,则( ).
设n阶矩阵A=(a1,a2,…an),B=(β1,β2,…βn), AB=(r1,r2,…rn),令向量组 (I):a1,a2,…an;(II):β1,β2,…βn;(III):r1,r2,…rn,若向量组(III)线性相关,则( ).
admin
2019-06-06
55
问题
设n阶矩阵A=(a
1
,a
2
,…a
n
),B=(β
1
,β
2
,…β
n
),
AB=(r
1
,r
2
,…r
n
),令向量组
(I):a
1
,a
2
,…a
n
;(II):β
1
,β
2
,…β
n
;(III):r
1
,r
2
,…r
n
,若向量组(III)线性相关,则( ).
选项
A、向量组(I)与向量组(II)都线性相关
B、向量组(I)线性相关
C、向量组(II)线性相关
D、向量组(I)与向量组(II)至少有一个线性相关
答案
D
解析
当向量组(I)线性相关时,r(A)<n,由r(AB)≤r(A)得r(AB)<n,即向量组(III)线性相关;
同理,当向量组(II)线性相关时,r(B)<n,由r(AB)≤r(B)得r(AB)<n,即向量组(III)线性相关,选D.
转载请注明原文地址:https://kaotiyun.com/show/SvV4777K
0
考研数学二
相关试题推荐
设,问a,b,c为何值时,矩阵方程AX=B有解,有解时求出全部解.
设抛物线y=ax2+bx+c过点(0,0)及(1,2),其中a<0,确定a,b,c,使抛物线与x轴所围成的面积最小.
极限=________.
考虑二元函数f(x,y)在点(x0,y0)处的下面四条性质:①连续②可微③f’x(x0,y0)与f’y(x0,y0)存在④f’x(x,y)与f’y(x,y)连续若用“P=>Q”表示可由性质P推出性质Q,则有().
设f(x,y)=则f(x,y)在(0,0)处().
已知二次型f(x1,x2,x3=4x22一3x32+4x1x2—4x1x3+8x2x3。用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为。求A;
设ρ=ρ(x)是抛物线y=上任一点M(x,y)(x≥1)处的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算3ρd2ρ/ds2-(dρ/ds)2的值。(在直角坐标系下曲率公式为K=)
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和术速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设有半径为a,面密度为σ的均匀圆板,质量为m的质点位于通过圆板中心O且垂直于圆板的直线上,=b,求圆板对质点的引力.
随机试题
甲、乙、丙为某有限责任公司股东。现甲欲对外转让其股份,下列说法正确的是()。
风湿性二尖瓣狭窄的类型分为_________和_________。
输尿管结核患者,静脉肾盂造影的典型表现为
一个基团常有多种振动形式,其中能引起红外吸收的振动通常会出现一个相应的特征峰。根据特征峰鉴别化学基团的方法是()。
在现代风险收益模型中,风险是用()定义的。
从预警对象看,下列预警中,不属于农产品质量安全预警的是()。
简述教师的教育专业素养。
在教育过程中,教师对突发性事件作出迅速、恰当的处理被称为“教育机智”。这反映了教师劳动的哪一特点?()
有些台独分子论证说:凡属中华人民共和国政府管辖的都是中国人。台湾人现在不受中华人民共和国政府管辖,所以,台湾人不是中国人。以下哪一个推理明显说明上述论证不成立?
Whydidthemotheragreetogooutfordinner?
最新回复
(
0
)