首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] (I)证明拉格朗日中值定理:若函数f(x)在[a,b]连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b-a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(δ>0)内可导,且,则f’+(
[2009年] (I)证明拉格朗日中值定理:若函数f(x)在[a,b]连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b-a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(δ>0)内可导,且,则f’+(
admin
2019-04-08
55
问题
[2009年] (I)证明拉格朗日中值定理:若函数f(x)在[a,b]连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b-a).
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(δ>0)内可导,且
,则f’
+
(0)存在,且f’
+
(0)=A.
选项
答案
(I)设想曲线f(x)与直线AB除交于A,B两点外,还交于原点(f(0)=0),则可构造辅助函数[*],则[*]由罗尔定理知, 在(a,b)内至少存在一点ξ,使F’(ξ)=0,即 [*] 亦即f(B)-f(A)=f’(ξ)(b-a). (Ⅱ)任取x∈(0,δ),在[0,x]上由拉格朗日中值定理得到,存在ξ∈(0,x),使得 [*] 当x→0
+
时,ξ→0
+
.由右导数定义,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Sx04777K
0
考研数学一
相关试题推荐
设A,B为随机事件,且P(B)>0,P(A|B)=1,则必有()
设半径为R的球之球心位于以原点为中心、a为半径的定球面上(2a>R>0,a为常数).试确定R为何值时前者夹在定球面内部的表面积为最大,并求出此最大值.
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(ν).
设随机变量X服从参数为λ的指数分布,G(x)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(X)的概率分布不是区间[0,1]上的均匀分布.
假设目标出现在射程之内的概率为0.7,这时一次射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率.
求过直线且与点(1,2,1)的距离为l的平面方程.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为π/3[s2f(a)-f(1)].若f(1)=1/2,求:f(x)的极值.
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.求先抽到的一份报名表是女生表的概率p;
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球中一个是红球一个是白球;
设n为正整数,F(x)=证明:对于给定的n,F(x)有且仅有一个零(实)点,并且是正的,记该零点为an;
随机试题
以下关于股票基金风险的说法,正确的是()。
有宣肺解表,祛痰平喘之功的方剂是
下列各项中,可出现神昏的疾病有
根据标准预防概念,不具有传染性的物质是
会计科目与账户都是对会计对象具体内容的科学分类,两者口径一致,性质相同,具有相同的格式和结构。()
已计入各期损益的研究与开发费用,在相关技术依法申请取得专权时,应予转回并计入专利权的入账价值。( )
广告的四个法定特征为______、______、______、______。
下列描述中正确的是______。
StandardEnglishisthevarietyofEnglishwhichisusuallyusedinprintandwhichisnormallytaughtinschoolsandtonon-nat
Hestronglyobjectedto(treat)______likethis.
最新回复
(
0
)