[2009年] (I)证明拉格朗日中值定理:若函数f(x)在[a,b]连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b-a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(δ>0)内可导,且,则f’+(

admin2019-04-08  55

问题 [2009年]   (I)证明拉格朗日中值定理:若函数f(x)在[a,b]连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b-a).
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(δ>0)内可导,且,则f’+(0)存在,且f’+(0)=A.

选项

答案(I)设想曲线f(x)与直线AB除交于A,B两点外,还交于原点(f(0)=0),则可构造辅助函数[*],则[*]由罗尔定理知, 在(a,b)内至少存在一点ξ,使F’(ξ)=0,即 [*] 亦即f(B)-f(A)=f’(ξ)(b-a). (Ⅱ)任取x∈(0,δ),在[0,x]上由拉格朗日中值定理得到,存在ξ∈(0,x),使得 [*] 当x→0+时,ξ→0+.由右导数定义,有 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/Sx04777K
0

相关试题推荐
最新回复(0)