设f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0。证明: 对于任意的x∈(一1,0)∪(0,1),存在唯一的0(x)∈(0,1),使f(x)=f(0)+xf'(θ(x)x)成立;

admin2019-01-19  36

问题 设f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0。证明:
对于任意的x∈(一1,0)∪(0,1),存在唯一的0(x)∈(0,1),使f(x)=f(0)+xf'(θ(x)x)成立;

选项

答案由拉格朗日中值定理,对任意x∈(一1,1),x≠0,存在θ∈(0,1)便 f(x)=f(0)+xf'(θx),(θ与x有关)。 又由f"(x)连续且f"(x)≠0,故f"(x)在(一1,1)不变号,所以f'(x)在(一1,1)严格单调,θ唯一。

解析
转载请注明原文地址:https://kaotiyun.com/show/T1P4777K
0

最新回复(0)