首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是矩阵A的两个特征值,且λ1≠λ2,对应的特征向量分别为α1,α2,则α1,Aαλ1,λ2+Aα2线性无关的充分必要条件是( )。
设λ1,λ2是矩阵A的两个特征值,且λ1≠λ2,对应的特征向量分别为α1,α2,则α1,Aαλ1,λ2+Aα2线性无关的充分必要条件是( )。
admin
2022-03-23
60
问题
设λ
1
,λ
2
是矩阵A的两个特征值,且λ
1
≠λ
2
,对应的特征向量分别为α
1
,α
2
,则α
1
,Aαλ
1
,λ
2
+Aα
2
线性无关的充分必要条件是( )。
选项
A、λ
1
≠0
B、λ
1
=0
C、λ
2
≠0
D、λ
2
=0
答案
C
解析
由λ
1
≠λ
2
,知α
1
,α
2
线性无关,且Aα
1
+Aα
2
=λ
1
α
1
+λ
2
α
2
。
令β=Aα
1
+Aα
2
=λ
1
α
1
+λ
2
α
2
,则(α
1
,β)=(α
1
,α
2
)
若α
1
,β线性无关,则r(
)=r(α
1
,β)=2,即
≠0,λ
2
≠0,反过来,若λ
2
≠0,则
≠0,即
可逆。
于是,r(α
1
,β)=r(α
1
,α
2
)=2,即α
1
,β线性无关,选C。
转载请注明原文地址:https://kaotiyun.com/show/wIR4777K
0
考研数学三
相关试题推荐
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
已知函数y=f(x)对一切x满足xf’’(x)+3x[f’(x)]2=1一e-x.若f’(x0)=0.(x0≠0),则
设函数f(x)在(一∞,+∞)内连续,其导数的图形如下页图,则f(x)有().
设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max{X1,X2,X3}.(Ⅰ)求T的概率密度;(Ⅱ)确定a,使得E(aT)=θ.
设f(x)在[0,2]上连续,在(0,2)内三阶可导,且.证明:存在ξ∈(0,2),使得f’’’(ξ)=9.
已知方程组有解,证明方程组无解.
求幂级数的收敛区间与和函数f(x).
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设f(x)为连续函数,(1)证明:∫0πxf(sinx)dx=∫0πf(sinx)dx=f(sinx)dx;(2)证明:∫02πf(|sinx|)dx=f(sinx)dx;(3)求∫0π
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
随机试题
关于每分输出量的叙述,错误的是
有关肿瘤倍增时间的描述错误的是
阻塞性黄疸时,血清酶谱的变化正确的是
下列哪项不属于外科急腹症的手术方式( )
治疗经行身痛之血虚证的代表方剂是()
采用侵蚀模式预测水土流失时,常用方法包括()。
县级以上人民政府城乡规划行政主管部门实施行政监督检查权的基本前提是必须遵循依法行政,下列选项中不属于其具体内容的是()
甲公司期末原材料的账面余额为100万元,数量为10吨。该原材料专门用于生产与乙公司所签合同约定的20台Y产品该合同约定:甲公司为乙公司提供Y产品20台,每台售价10万元(不含增值税,本题下同)。将该原材料加工成20台Y产品尚需加工成本总额为95万元。估计销
设一棵树的度为3,其中度为3,2,1的结点个数分别为4,1,3。则该棵树中的叶子结点数为
Howoldwastheshoe?
最新回复
(
0
)