首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是矩阵A的两个特征值,且λ1≠λ2,对应的特征向量分别为α1,α2,则α1,Aαλ1,λ2+Aα2线性无关的充分必要条件是( )。
设λ1,λ2是矩阵A的两个特征值,且λ1≠λ2,对应的特征向量分别为α1,α2,则α1,Aαλ1,λ2+Aα2线性无关的充分必要条件是( )。
admin
2022-03-23
106
问题
设λ
1
,λ
2
是矩阵A的两个特征值,且λ
1
≠λ
2
,对应的特征向量分别为α
1
,α
2
,则α
1
,Aαλ
1
,λ
2
+Aα
2
线性无关的充分必要条件是( )。
选项
A、λ
1
≠0
B、λ
1
=0
C、λ
2
≠0
D、λ
2
=0
答案
C
解析
由λ
1
≠λ
2
,知α
1
,α
2
线性无关,且Aα
1
+Aα
2
=λ
1
α
1
+λ
2
α
2
。
令β=Aα
1
+Aα
2
=λ
1
α
1
+λ
2
α
2
,则(α
1
,β)=(α
1
,α
2
)
若α
1
,β线性无关,则r(
)=r(α
1
,β)=2,即
≠0,λ
2
≠0,反过来,若λ
2
≠0,则
≠0,即
可逆。
于是,r(α
1
,β)=r(α
1
,α
2
)=2,即α
1
,β线性无关,选C。
转载请注明原文地址:https://kaotiyun.com/show/wIR4777K
0
考研数学三
相关试题推荐
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
在全概率公式中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
下列反常积分其结论不正确的是
在全概率公式P(B)=中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为()
设二次型f(x1,x2,x3)=ax12+ax22+(a1)x32+2x1x3-2x2x3.若二次型f的规范形为y12+y22,求a的值.
设f(x)在[0.1]上连续可导,f'(1)=0,证明:存在ξ∈[0,1],使得f'(ξ)=4.
求函数在点P(-1,3,-3)处的梯度以及沿曲线x(t)=-t2,y(t)=3t2,z(t)=-3t3在点P函数增大的切线方向的方向导数.
由于折旧等因素,某机器转售价格P(t)是时间t(周)的减函数P(t)=,其中A是机器的最初价格,在任何时间t,机器开动就能产生的利润,则使转售出去总利润最大时机器使用的时间t=_________________________。(In2≈0.693)
求∫013x2arcsinxdx.
随机试题
一横波沿绳子传播时的波动方程为y=0.5cos(10πt一4πx),则绳子各点振动时的最大速度为()。
2004年2月1日,甲向国家知识产权局提出发明专利申请。审查其新颖性时,国家知识产权局发现外国某杂志于2003年5月发表的一篇论文所描述的技术与甲的发明基本相同。甲的申请()
肝血色素沉着病的CT值为()
胸腔积液、气胸、肺不张时可伴有肺部炎变可有
在厦门港施工的某工地项目经理部跟踪到西北太平洋面上有一热带气旋在活动,并且得悉该工地于未来48h以内,遭遇风力可能达到6级以上。问题:此时该工地正好有一施工船舶准备拆检主机,假如你是该工地项目经理,你应该怎样做?
硬化混凝土抗渗性的主要影响因素是()。
()是指依照《中华人民共和国公司法》和《中华人民共和国证券法》规定设立的经营证券业务的有限责任公司或者股份有限公司。
在社会主义市场经济中,国有企业应发挥重要作用的行业和领域主要有()。
个案记录可能会带有个人的偏见或有选择性的记忆。()
“信息高速公路”是指()。
最新回复
(
0
)