首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组有解(1,-1,1,-1)T. (1)用导出组的基础解系表示通解; (2)写出χ2=χ3的全部解.
已知线性方程组有解(1,-1,1,-1)T. (1)用导出组的基础解系表示通解; (2)写出χ2=χ3的全部解.
admin
2018-11-23
43
问题
已知线性方程组
有解(1,-1,1,-1)
T
.
(1)用导出组的基础解系表示通解;
(2)写出χ
2
=χ
3
的全部解.
选项
答案
(1,-1,1,-1)
T
代入方程组,可得到λ=μ,但是不能求得它们的值. (1)此方程组已有了特解(1,-1,1,-1)
T
,只用再求出导出组的基础解系就可写出通解.对系数矩阵作初等行变换: [*] ①如果2λ-1=0,则 [*] (1,-3,1,0)
T
和(-1/2,-1,0,1)
T
为导出组的基础解系,通解为 (1,-1,1,-1)
T
+c
1
(1,-3,1,0)
T
+c
2
(-1/2,-1,0,1)
T
,c
1
,c
2
任意. ②如果2λ-1≠0,则用2λ-1除B的第三行: [*] (-1,1/2,-1/2,1)
T
为导出组的基础解系,通解为 (1,-1,1,-1)
T
+c(-1,1/2,-1/2,1)
T
,c任意. (2)当2λ-1=0时,通解的χ
2
=-1-3c
1
-c
2
,χ
3
=1+c
1
,由于χ
2
=χ
3
,则有-1-3c
1
-c
3
=1+c
1
,从而c
2
=-2-4c
1
,因此满足χ
2
=χ
3
的通解为(2,1,1,-3)
T
+c
1
(3,1,1,-4)
T
. 当2λ-1≠0时,-1+c/2=1-c/2,得c=2,此时解为(-1,0,0,1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/T9M4777K
0
考研数学一
相关试题推荐
用换元法求下列不定积分:
已知A,B,C都是行列式值为2的三阶矩阵,则D==_______。
设f(x)在[a,b]上连续可导,f(a)=f(b)=0,且f2(x)dx=1,则xf(x)f′(x)dx=____________.
微分方程xy’+2y=sinx满足条件y(π)=的通解为________。
设ex-ysin(x+z)=0,试求
对于方程组问k1与k2各取何值,方程组无解?有唯一解?有无穷多解?在有无穷多解时,求其一般解.
设向量组(I):α1,α2,…,αr线性无关,且(I)可由(Ⅱ):β1,β2,…,βs线性表示.证明:在(Ⅱ)中至少存在一个向量βj,使得βj,α2,…,αr线性无关.
设α为实n维非零列向量,αT表示α的转置.(1)证明:为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为n维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
证明:n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式
设随机变量(U,V)在以点(-2,0),(2,0),(0,1),(0,-1)为顶点的四边形上服从均匀分布,随机变量求X和Y的相关系数;
随机试题
形成两端开放的通道性坏死的缺损称
参与排卵的激素有
蜘蛛痣形成的原因是
A.粉红色乳状脓性痰B.棕红色胶冻状痰C.巧克力色腥味痰D.脓性恶臭痰E.铁锈色痰金黄色葡萄球菌肺炎
作为建设工程项目的组成部分,具有独立的设计文件,竣工后可以独立发挥生产能力或效益的一组配套齐全的工程项目是( )。
【背景资料】某施工企业承担地面建筑的基坑开挖工程。基坑开挖深度为5m,基坑北侧距基坑边缘4m处已有一栋三层永久建筑物,基坑边缘堆有施工单位的大量建筑钢材。基坑所处的地质条件为砂质土层,地下水位在地表以下4m。基坑设计采用钢板桩支护。施工前建设单位
在权力运行体系中,决策是核心,执行是关键,监督是保障。()
下列语句中,有语病的一句是()。
根据我国《宪法》和有关法律的规定,下列表述正确的有()。
A、Hewon’teatdinnertonight.B、Hewantstomakeapizza.C、Heistoohungrytocook.D、Hewantstosavesometime.D
最新回复
(
0
)