首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组有解(1,-1,1,-1)T. (1)用导出组的基础解系表示通解; (2)写出χ2=χ3的全部解.
已知线性方程组有解(1,-1,1,-1)T. (1)用导出组的基础解系表示通解; (2)写出χ2=χ3的全部解.
admin
2018-11-23
42
问题
已知线性方程组
有解(1,-1,1,-1)
T
.
(1)用导出组的基础解系表示通解;
(2)写出χ
2
=χ
3
的全部解.
选项
答案
(1,-1,1,-1)
T
代入方程组,可得到λ=μ,但是不能求得它们的值. (1)此方程组已有了特解(1,-1,1,-1)
T
,只用再求出导出组的基础解系就可写出通解.对系数矩阵作初等行变换: [*] ①如果2λ-1=0,则 [*] (1,-3,1,0)
T
和(-1/2,-1,0,1)
T
为导出组的基础解系,通解为 (1,-1,1,-1)
T
+c
1
(1,-3,1,0)
T
+c
2
(-1/2,-1,0,1)
T
,c
1
,c
2
任意. ②如果2λ-1≠0,则用2λ-1除B的第三行: [*] (-1,1/2,-1/2,1)
T
为导出组的基础解系,通解为 (1,-1,1,-1)
T
+c(-1,1/2,-1/2,1)
T
,c任意. (2)当2λ-1=0时,通解的χ
2
=-1-3c
1
-c
2
,χ
3
=1+c
1
,由于χ
2
=χ
3
,则有-1-3c
1
-c
3
=1+c
1
,从而c
2
=-2-4c
1
,因此满足χ
2
=χ
3
的通解为(2,1,1,-3)
T
+c
1
(3,1,1,-4)
T
. 当2λ-1≠0时,-1+c/2=1-c/2,得c=2,此时解为(-1,0,0,1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/T9M4777K
0
考研数学一
相关试题推荐
设B是秩为2的5×4矩阵,α1=(1,1,2.3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T都是齐次线性方程组BX=0的解向量.求BX=0的解空间的一个标准正交基.
已知α1,α2均为2维向量,矩阵A=[2α1+α2,α1一α2],β=[α1,α2],若行列式|A|=6,则|B|=________.
设D(X)=1,D(Y)=9,ρXY=一0.3,则Cov(X,Y)=________
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是______。
函数u=x2一2yz在点(1,一2,2)处的方向导数最大值为___________.
计算下列n阶行列式:
以yOz坐标面上的平面曲线段y=f(x)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为16πcm2,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm2/s增大,试求曲线y=f(z)的方程.
设有线性方程组(1)证明:当a1,a2,a3,a4两两不等时,此方程组无解;(2)设a1=a3=k,a2=a4=一k(k≠0)时,β1=(一1,1,1)T,β2=(1,1,一1)T是方程组的两个解,写出此方程组的通解.
(92年)设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问:(1)α1能否由α2,α3线性表出?证明你的结论.(2)α4能否由α1,α2,α3线性表出?证明你的结论.
已知A,B为两事件,且BA,P(A)=0.3,=()
随机试题
简述我国特赦制度的特点。
糖皮质激素治疗急性严重感染时应采用
根据《工程建设项目施工招标投标办法》(国家八部委局第30号令),工程施工招标投标活动依法由()负责,任何单位和个人不得以任何方式非法干涉工程招标投标活动。
( )是实施工程管理的基本单位。
()在19世纪完成了产业革命,大大促进了生产力的发展和经济的繁荣。
集装箱进出港区时确定箱体交接责任的单证是()。
12周岁女孩李某无故摔打1岁男婴,并将其从高楼扔下,造成小男婴生命垂危的严重后果。对此案件,应该如何处置?()
有目的地组织学生进行一定的实际活动以培养他们的良好品德的方法叫做()。
《中庸》
TryingtooHardCanSlowNewLanguageDevelopmentA)Neuroscientistshavelongobservedthatlearningalanguagepresentsadiffe
最新回复
(
0
)