首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A1,A2和B是任意事件,且0
设A1,A2和B是任意事件,且0
admin
2019-01-19
30
问题
设A
1
,A
2
和B是任意事件,且0
1∪A
2
)|B}=P(A
1
|B)+P(A
2
|B),则( )
选项
A、P(A
1
∪A
2
)=P(A
1
)+P(A
2
)。
B、P(A
1
∪A
2
)=e(A
1
|B)+P(A
2
|B)。
C、P(A
1
B∪A
2
B)=P(A
1
B)+P(A
2
B)。
D、P((A
1
∪A
2
)|
)=P(A
1
|
)+P(A
2
|
)。
答案
C
解析
由题设知,P(A
1
A
2
|B)=0,但是这不能保证P(A
1
A
2
)=0和P(A
1
A
2
|
)=0,故A项和D项不成立。由于P(A
1
|B)+P(A
2
|B)=P[(A
1
∪A
2
)|B]未必等于P(A
1
+A
2
),因此B项一般也不成立。由P(B)>0及P[(A
1
∪A
2
)|B]=P(A
1
|B)+P(A
2
|B),可见C选项成立:
故选C。
转载请注明原文地址:https://kaotiyun.com/show/TBP4777K
0
考研数学三
相关试题推荐
(91年)设随机变最X的分布函数为则X的概率分布为_______.
求二元函数z=f(χ,y)=χ2y(4-χ-y)在由直线χ+y=6、χ轴和y轴所围成的闭区域D上的极值,最大值与最小值.
设区域D={(χ,y)|χ2+y2≤4,χ≥0,y≥0},f(χ)为D上正值连续函数,a.b为常数,则=【】
设随机变量(X,Y)的概率密度为问X与Y是否独立?|X|与|Y|是否独立?
设n维实向α=(α1,α2,…,αn)T≠0,方阵A=ααT.(1)证明:对于正整数m,存在常数t,使Am=tm-1A,并求出t;(2)求可逆矩阵P,使P-1AP成对角矩阵.
设总体的密度为:f(χ)=其中θ>0,而θ和μ为未知参数.从X中抽得简单样本X1,X2,…,Xn.试求θ和μ的矩估计和最大似然估计.
设k个总体N(μi,σ2)(i=1,…,K)相互独立,从第i个总体中抽得简单样本:Xi1,Xi2…,Xin,记Xi=,(i=1,…,k).又记n=试求T=的分布.
已知向量组(Ⅰ):β1=(0,1,-1)T,β2(a,2,1)T,β3=(6,1,0)T与向量组(Ⅱ):α1=(1,2,-3)T,α2=(3,0,1)T,α3=(9,6,-7)T具有相同的秩,且β2可由向量组(Ⅱ)线
函数f(x)=|4x3一18x2+27|在区间[0,2]上的最小值为_____,最大值为______.
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y’+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k为常数.
随机试题
律师协会的宗旨有
此患者在排齐整平阶段,不采用下列哪项措施下列哪项是此患者远中移动尖牙的有效方法
直肠癌术前放疗剂量一般为
下列()墙面装饰方式仅用于内墙面。
警察的政治镇压职能是社会管理职能的基础。()
简述伪造、变造、买卖身份证件罪的构成要件。
1942年延安整风运动的中心任务是()
匿名FTP访问通常使用(20)作为用户名。
PsychologistAlfredAdlersuggestedthattheprimarygoalofthepsyche(精神)wassuperiority.Although【C1】______hebelievedthati
Makingchoicesishard.ThatwouldbewhyresearcherMoranCerfhaseliminateditfromhislife.Asarule,healwayschoosesth
最新回复
(
0
)