首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为奇数阶矩阵,AAT=ATA=E,|A|>0,则|A—E|=____________.
设A为奇数阶矩阵,AAT=ATA=E,|A|>0,则|A—E|=____________.
admin
2019-03-18
70
问题
设A为奇数阶矩阵,AA
T
=A
T
A=E,|A|>0,则|A—E|=____________.
选项
答案
0
解析
|A一E|=|A—AA
T
|=|A(E一A
T
)|=|A||(E—A)
T
|=|A||E—A|.
由于AA
T
=A
T
A=E,可知|A|
2
=1.又由于|A|>0,可知|A|=1.又由于A为奇数阶矩阵,故
|E一A|=|一(A—E)|=一|A—E|,
故有|A—E|=一|A—E|,可知|A—E|=0.
转载请注明原文地址:https://kaotiyun.com/show/TIV4777K
0
考研数学二
相关试题推荐
设u=u(χ,y)由方程u=φ(u)+∫yχ(t)dt确定,求,其中φ(u)≠1.
计算Dn=,其中n>2.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,计算f(n)(2).
已知A=是正定矩阵,证明△=>0.
设λ为可逆方阵A的特征值,且x为对应的特征向量,证明:(1)λ≠0;(2)为A一1的特征值,且x为对应的特征向量;(3)为A*的特征值,且x为对应的特征向量.
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
设n阶矩阵A≠0,存在某正整数m,使Am=0,证明:A必不相似于对角矩阵.
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex.(Ⅰ)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点.
求微分方程χ-2y=χlnχ的满足初始条件y(1)=0的特解.
随机试题
Theclassroomisquiteclean_____somewastepaperonthefloor.
会导致病理性高血糖的情况是
患者,男,16岁。发热4天伴纳差2天急诊。检查:血压114/70mmHg,左脚趾甲沟部红肿破溃。血白细胞计数为20×109/L,中性粒细胞为89%。左脚趾经切开引流处理后应给予
吸收给药总量的50%.~75%.不经过肝门静脉药物的pKa大于10
来自于期货市场之外,对期货市场的相关主体可能产生影响的风险是( )。
按照詹姆斯.拜伦和大卫.克雷普斯的分类,处理日常信件的办公室文员的工作属于()。
甲公司向乙宾馆发出一封电报称:现有一批电器,其中电视机80台,每台售价3400元;电冰箱100台,每台售价2800元,总销售优惠价52万元。如有意购买,请告知。乙宾馆接到该电报后,遂向甲公司回复称:只欲购买甲公司50台电视机,每台电视机付款3200元;60
广告:指为了商业目的,由商品经营者或服务提供者承担费用,通过一定媒介或一定形式,如通过报刊、电视、路牌、橱窗等,直接或间接地对自己推销的商品或所提供的服务所进行的公开的宣传活动。下列属于广告活动的是()。
接收者操作特性曲线(ROC)的横轴是()
Thinkgolfis【C1】______game?Thinkagain.ResearchersincludingDebbieCrewsofArizonaStateUniversityandJohnMiltonofthe
最新回复
(
0
)