首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T, α3=(一1,2,一3)T都是A的属于特征值6的特征向量. (1)求A的另一特征值和对应的特征向量; (2)求矩阵A.
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T, α3=(一1,2,一3)T都是A的属于特征值6的特征向量. (1)求A的另一特征值和对应的特征向量; (2)求矩阵A.
admin
2017-04-23
86
问题
设三阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,
α
3
=(一1,2,一3)
T
都是A的属于特征值6的特征向量.
(1)求A的另一特征值和对应的特征向量;
(2)求矩阵A.
选项
答案
(1)因为λ
1
=λ
2
=6是A的二重特征值,故A的属于特征值6的线性无关的特征向量有2个,有题设可得α
1
,α
2
,α
3
一个极大无关组为α
1
,α
2
,故α
1
,α
2
为A的属于特征值6的线性无关的特征向量. 由r(A)=2知|A|=0,所以A的另一特征值为λ
3
=0. 设λ
3
=0对应的特征向量为α= (x
1
,x
2
,x
3
)
T
,则有α
i
T
α=0(i=1,2),即 [*] 解得此方程组的基础解系为α=(一1,1,1)
T
,即A的属于特征值λ
3
=0的特征向量为kα=k(一1,1,1)
T
(k为任意非零常数). (2)令矩阵P=[α
1
,α
2
,α],则有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ekt4777K
0
考研数学二
相关试题推荐
设函数z(x,y)由方程给出,F,z都是可微函数,则有等式
设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1,0)=________。
设z=z(x,y)是由x2-6xy+10y2-2yz-z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
设z=z(x,y)是由方程x2+y2+z2-2x+4y-6z-11=0所确定的函数,求该函数的极值。
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f"(ξ)<0.
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x].
设线性无关函数y1(x),y2(x),y3(x)都是二阶非齐次线性方程y"+P(x)y’+Q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是________。
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为V(t)=[t2f(t)-f(1)]试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=的解。
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任意b=(b1,b2,…,bn)T().
求下列极限:
随机试题
AIDS继发性中枢神经系统肿瘤:原发性淋巴瘤、Kaposi肉瘤。()
引起呕吐的原因有
牙周韧带的主纤维中,对垂直颌力起缓冲作用的主要是
某患者,男,有不洁性交史,2月前出现生殖器皮肤的无痛性溃疡,1个月后自然愈合,近日出现全身皮肤红疹,伴有淋巴结肿大,该患者可能患有何病
按照国家规定,大中型企业、事业单位应设置()来主管会计机构的全面工作。
零件的联接表面之间,在外力作用下,接触部位产生较大的接触应力而引起变形,即是零件的接触()较差。
采购预算方案制定的原则主要有()
简述发挥积极因素与克服消极因素相结合的原则。
(89年)在下列等式中,正确的结果是【】
与HTTP相比,HTTPS协议对传输的内容进行加密,更加安全。HTTPS基于(7)安全协议,其默认端口是(8)。(7)
最新回复
(
0
)