首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T, α3=(一1,2,一3)T都是A的属于特征值6的特征向量. (1)求A的另一特征值和对应的特征向量; (2)求矩阵A.
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T, α3=(一1,2,一3)T都是A的属于特征值6的特征向量. (1)求A的另一特征值和对应的特征向量; (2)求矩阵A.
admin
2017-04-23
49
问题
设三阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,
α
3
=(一1,2,一3)
T
都是A的属于特征值6的特征向量.
(1)求A的另一特征值和对应的特征向量;
(2)求矩阵A.
选项
答案
(1)因为λ
1
=λ
2
=6是A的二重特征值,故A的属于特征值6的线性无关的特征向量有2个,有题设可得α
1
,α
2
,α
3
一个极大无关组为α
1
,α
2
,故α
1
,α
2
为A的属于特征值6的线性无关的特征向量. 由r(A)=2知|A|=0,所以A的另一特征值为λ
3
=0. 设λ
3
=0对应的特征向量为α= (x
1
,x
2
,x
3
)
T
,则有α
i
T
α=0(i=1,2),即 [*] 解得此方程组的基础解系为α=(一1,1,1)
T
,即A的属于特征值λ
3
=0的特征向量为kα=k(一1,1,1)
T
(k为任意非零常数). (2)令矩阵P=[α
1
,α
2
,α],则有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ekt4777K
0
考研数学二
相关试题推荐
求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值和最小值。
计算二重积分其中积分区域D={(x,y)|x2+y2≤π}。
证明f"xy(0,0)≠f"yx(0,0).
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f"(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为().
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
设线性无关函数y1(x),y2(x),y3(x)都是二阶非齐次线性方程y"+P(x)y’+Q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是________。
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
随机试题
下列关于印花税缴纳方法的表述,不正确的是()。
下列自然人中,属于无民事行为能力人的是()。
下列不属于美国社会心理学家班杜拉强化理论的分类的是()。
当代世界教育改革的趋势主要有()
认为动物界也有教育且把教育看作是一个生物学过程的观点是()。
我国十二届全国人大常委会第七次会议表决通过了两个决定:将9月3日定为中国人民抗日战争胜利纪念日,将()设为南京大屠杀死难者国家公祭日。
18世纪、19世纪宪法所规定的公民基本权利,只限于人身自由、言论自由、出版自由、集会自由等自由权。但随着()的制定,公民的基本权利从自由权已扩大到了社会权、经济和文化权利领域。
使用VC6打开考生文件夹下的源程序文件modi2.cpp。完成fun()数,其功能是:求出M行N列二维数组每行元素中的最小值,并计算它们的和值。和值通过形参传回主函数输出。注意:不能修改程序的其他部分,只能修改fun()函数。#inClude
Increasingly,thedevelopmentoftourismisseentohaveaneffectontheenvironment.Erosion(磨损)isoneproblem.Thestepsand
OnProfessionalEthicsofDoctors1.目前许多医生的职业道德遭到人们的质疑2.原因是…3.你认为应该如何解决这一问题
最新回复
(
0
)