首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar,且向量组a1,a2,…,ar线性无关,证明向量组b1,b2,…,br线性无关.
设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar,且向量组a1,a2,…,ar线性无关,证明向量组b1,b2,…,br线性无关.
admin
2021-02-25
63
问题
设b
1
=a
1
,b
2
=a
1
+a
2
,…,b
r
=a
1
+a
2
+…+a
r
,且向量组a
1
,a
2
,…,a
r
线性无关,证明向量组b
1
,b
2
,…,b
r
线性无关.
选项
答案
设有x
1
,x
2
,…,x
r
使x
1
b
1
+x
2
b
2
+…+x
r
b
r
=0,即 (x
1
+x
2
+…+x
r
)a
1
+(x
2
+x
3
+…+x
r
)a
2
+…+x
r
a
r
=0, 由于a
1
,a
2
,…,a
r
线性无关,所以有齐次线性方程组 [*] 方程组的系数行列式为[*]=1≠0, 所以方程组只有零解,从而可得b
1
,b
2
,…,b
r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/TK84777K
0
考研数学二
相关试题推荐
设函数F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx′(x0,y0)=0,Fy′(x0,y0)>0,Fxx″(x0,y0)<0.由方程F(x,y)=0在x0的某邻域确定的隐函数y=y(x),它有连续的二阶导数,且y(x0)=
[*]
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设平面区域D由直线x=3y,y=3x及x+y=8围成,计算x2dxdy的值。
设A=,正交矩阵Q使得QTAQ为对角矩阵,若Q的第一列为(1,2,1)T,求a,Q。
设矩阵A,B满足A*BA=2BA-8E,且A=,则B=_______.
设函数f(μ)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=________。
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A—E恒可逆.正确的个数为()
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
设f(x)在(0,+∞)内一阶连续可微,且对x∈(0,+∞)满足x∫01f(xt)dt=2∫0xf(t)dt+xf(x)+x3,又f(1)=0,求f(x).
随机试题
对国务院部门或者省、自治区、直辖市人民政府的具体行政行为不服的,向作出该具体行政行为的国务院部门或者省、自治区、直辖市人民政府申请行政________。对此决定不服的,可以向人民法院提起行政________:也可以向国务院申请________。填
高某诉乙县林业局案高某系A省甲县个体工商户,其持有的工商营业执照载明经营范围是林产品加工,经营方式是加工、收购、销售。高某向甲县工商局缴纳了松香运销管理费后,将自己加工的松香运往A省乙县出售。当高某进入乙县时,被乙县林业局执法人员拦截。乙县林业局以高某未
有创动脉血压监测常用的位置有()、()、(),首选()。
女性。26岁。发冷发热,轻度黄疸,脾肋下2cm,血红蛋白76g/L,白细胞12×109/L,血小板150×109/L。Coombs试验直接阳性。Ham试验阴性。应诊断为
下列各项存货中,其可变现净值为零的有()。
中医针灸是中国特有的治疗疾病的方法,下列关于中医针灸的说法错误的一项是()。
2019年6月,全国发行地方政府债券8996亿元,同比增长68.37%,环比增长195.63%。其中,发行一般债券3178亿元,同比减少28.33%,环比增长117.08%,发行专项债券5818亿元,同比增长540.04%,环比增长268.46%;按用途划
【《水经注》】北京师范大学2002年中国史学史真题;北京师范大学2004年历史学综合真题;湖南大学2018年中国史真题;暨南大学2018年中国史真题
宣告建立分支机构AnnouncingtheEstablishmentofaNewBranch尊敬的先生/女士,因在贵国的贸易额大量增加,我们决定在这里开设一家分支机构,由王海先生任经理。新的分支机构将于3月1日开业,今后所有的
Thedirectorrequiredthateverymemberinhisdepartment(refer)______tothisreport.
最新回复
(
0
)