首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,证明下列结论: (1)aij=AijATA=E且|A|=1 (2)aij=-AijATA=E且|A|=-1.
设A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,证明下列结论: (1)aij=AijATA=E且|A|=1 (2)aij=-AijATA=E且|A|=-1.
admin
2018-09-20
71
问题
设A为n(n≥3)阶非零实矩阵,A
ij
为|A|中元素a
ij
的代数余子式,证明下列结论:
(1)a
ij
=A
ij
A
T
A=E且|A|=1
(2)a
ij
=-A
ij
A
T
A=E且|A|=-1.
选项
答案
(1)当a
ij
=A
ij
时,有A
T
=A*,则A
T
A=AA*=|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,所以tr(AA
T
)=[*].而tr(AA
T
)=tr(|A|E)=n|A|,这说明|A|>0.在AA
T
=|A|E两边取行列式,得|A|
n-2
=1,|A|=1. 反之,若A
T
A=E且|A|=1,则A*A=|A|E=E且A可逆,于是A
T
A=A*A,A
T
=A*,即a
ij
=A
ij
. (2)当a
ij
=一A
ij
时,有A
T
=-A*,则A
T
A=一A*A=一|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,不妨假设其第j列存在非零元素,所以|A|=[*]在A
T
A=一|A|E 两边取行列式得|A|=一1. 反之,若A
T
A=E且|A|=一1,由于A*A=|A|E=一E,于是A
T
A=-A*A.进一步,由于A可逆,得A
T
=-A*,即a
ij
=-A
ij
.
解析
转载请注明原文地址:https://kaotiyun.com/show/TRW4777K
0
考研数学三
相关试题推荐
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是AT的特征向量.
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
设A是3阶不可逆矩阵,α1,α2是Ax=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设A为n阶可逆矩阵,λ是A的一个特征值,则伴随矩阵A*的一个特征值是
(u,y,z)具有连续偏导数,而x=rsinφcosθ,y=rsinφsinθ,z=rcosφ.(Ⅰ)若,试证明u仅为φ与θ的函数;(Ⅱ)若,试证明u仅为r的函数.
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
已知A2=0,A≠0,证明A不能相似对角化.
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X-3Y的相关系数.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
设α=(1,0,-1)T,矩阵A=ααT,n为正整数,a为常数,则|aE-A*|=_______.
随机试题
人类区别于动物的根本标志是()
申请个体行医的,须经执业医师注册后在医疗、预防、保健机构中执业满
A.尿糖(++++),酮体阴性B.尿糖(++++),酮体强阳性C.尿糖阴性,酮体阳性D.尿糖(+),酮体阳性E.尿糖(+),酮体阴性糖尿病酮症酸中毒表现为
患者,女,50岁,胆总管探查、T管引流术后,提示T管的胆道远端通畅的表现是
目前,新建商品房市场的价格通常由()。
下列选项中,不属于行为事件面谈法的优势的是()。
被称为“国际会议之都”的城市是()。
国家建立以__________为主、其他多种渠道筹措教育经费为辅的体制,逐步增加对教育的投入,保证国家举办的学校教育经费的稳定来源。(2014·湖北)
[2014年第53~55题]基于以下题干:孔智、孟睿、荀慧、庄聪、墨灵、韩敏等6人组成一个代表队参加某次棋类大赛,其中两人参加围棋比赛,两人参加中国象棋比赛,还有两人参加国际象棋比赛。有关他们具体参加比赛项目的情况还需满足以下条件:(1
A、ThemanshouldtranslatethestoriesintoEnglish.B、Themanshouldn’thaveregisteredtheFrenchcourse.C、Shewillhelpthe
最新回复
(
0
)