首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,证明下列结论: (1)aij=AijATA=E且|A|=1 (2)aij=-AijATA=E且|A|=-1.
设A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,证明下列结论: (1)aij=AijATA=E且|A|=1 (2)aij=-AijATA=E且|A|=-1.
admin
2018-09-20
84
问题
设A为n(n≥3)阶非零实矩阵,A
ij
为|A|中元素a
ij
的代数余子式,证明下列结论:
(1)a
ij
=A
ij
A
T
A=E且|A|=1
(2)a
ij
=-A
ij
A
T
A=E且|A|=-1.
选项
答案
(1)当a
ij
=A
ij
时,有A
T
=A*,则A
T
A=AA*=|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,所以tr(AA
T
)=[*].而tr(AA
T
)=tr(|A|E)=n|A|,这说明|A|>0.在AA
T
=|A|E两边取行列式,得|A|
n-2
=1,|A|=1. 反之,若A
T
A=E且|A|=1,则A*A=|A|E=E且A可逆,于是A
T
A=A*A,A
T
=A*,即a
ij
=A
ij
. (2)当a
ij
=一A
ij
时,有A
T
=-A*,则A
T
A=一A*A=一|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,不妨假设其第j列存在非零元素,所以|A|=[*]在A
T
A=一|A|E 两边取行列式得|A|=一1. 反之,若A
T
A=E且|A|=一1,由于A*A=|A|E=一E,于是A
T
A=-A*A.进一步,由于A可逆,得A
T
=-A*,即a
ij
=-A
ij
.
解析
转载请注明原文地址:https://kaotiyun.com/show/TRW4777K
0
考研数学三
相关试题推荐
设f(x)的定义域为[1,+∞),f(x)在[1,+∞)可积,并且满足方程讨论f(x)的单调性.
已知f(x)=ax3+x2+2在x=0和x=-1处取得极值,求f(x)的单调区间、极值点和拐点.
求函数y=的单调区间,极值点及其图形的凹凸区间与拐点.
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
设α0是A属于特征值λ0的特征向量,则α0不一定是其特征向量的矩阵是
设f(x)连续,证明:
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=求方程组AX=b的通解.
设有2个四元齐次线性方程组:方程组①和(Ⅱ)是否有非零公共解?若有,求出所有的非零公共解?若没有,则说明理由.
设a=(1,1,一1)T是的一个特征向量.问A是否可以对角化?说明理由.
随机试题
健脾丸的功用是
护理学4个基本概念的核心是
根据《行政复议法》及其《实施条例》的规定,申请人在行政复议期间的法定权利有()。(2015年)
纳税人转让旧房及建筑物,凡不能取得评估价格,但能提供购房发票的,可按发票所载金额并从购买年度起至转让年度止每年加计扣除的比例为()。
下列债券的久期最长的是()。
所谓(),就是把儿童所应该学的东西结合在一起,完整地、系统地教授给儿童。
党对公安工作绝对领导的必要性包括()。
中国共产党同各民主党派合作的基本方针包括()。
若一个网络系统中有270个信息点,按照EI/TIA586标准进行结构化布线时,一般需要RJ45头的总量是______。
共有A,B,C,D,E5个元素要放在有顺序的5个位置上,要求满足条件:A在B之前,B在C之前(A>B>C),同时还要满足D在E的前面(D>E),问一共有多少种排法?
最新回复
(
0
)