首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
admin
2021-11-15
51
问题
设向量组α
1
,α
2
,…,α
s
为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α
1
,…,β+α
s
).
选项
答案
α
1
,α
2
,…,α
n
线性无关,因为Aβ≠0,所以β,β+α
1
,…,β+α
s
线性无关,故方程组BY=0只有零解.
解析
转载请注明原文地址:https://kaotiyun.com/show/TYy4777K
0
考研数学二
相关试题推荐
用变量代换x=sint将方程化为y关于t的方程,并求微分方程的通解。
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)-=0.证明:当x≥0时,e-x≤f(x)≤1.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0﹥0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件。
设二元函数f(x,y)=|x-y|Φ(x,y),其中Φ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是Φ(0,0)=0.
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.求方程组(II)BX=0的基础解系。
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
设有三个线性无关的特征向量,求a及An.
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求通解。
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为()。
随机试题
诊断成人脊柱结核最可靠的依据是
患者,女,24岁。持续3小时阵发性呼气性呼吸困难、烦躁不安,静脉注射氨茶碱无效。有支气管哮喘史。身体检查:双肺广泛哮鸣音及肺气肿征。应采取的治疗措施是
COSO的ERM框架包括8个相互关联的组成部分。框架哪一组成部分实施的政策和程序中,有助于确保风险应对得以有效实施?
证券投资政策是投资者为实现投资目标应遵循的基本方针和基本准则。()
有“科学管理之父”声誉的管理学家是()。
周老师在讲授正方形和长方形的知识点时,先让学生观察书本、课桌、墙面,朗读正方形、长方形的概念,然后再列举出一些错误的例子,指导学生自主发现在判断正方形、长方形时易犯的错误.并表扬能说清楚错误原因的学生。周老师运用的教学方法主要是()。
现场控制的内容包括()。
公文成文日期一般以机关负责人签发的日期为准。()
对监察机关移送起诉的案件,人民检察院的做法错误的是:
Herushedintothe(burn)______house.
最新回复
(
0
)