首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量. 证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量. 证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
admin
2018-09-25
65
问题
设A是3阶实矩阵,λ
1
,λ
2
,λ
3
是A的三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是三个对应的特征向量.
证明:当λ
2
λ
3
≠0时,向量组ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)线性无关.
选项
答案
因 [ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)] =[ξ
1
,λ
1
ξ
1
+λ
2
ξ
2
,λ
1
2
ξ
1
+λ
2
2
ξ
2
+λ
3
2
ξ
3
] =[ξ
1
,ξ
2
,ξ
3
] [*] 又λ
1
≠λ
2
≠λ
3
,故ξ
1
,ξ
2
,ξ
3
线性无关,由上式知 ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)线性无关<=> [*] =λ
2
λ
3
2
≠0,即λ
2
λ
3
≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Teg4777K
0
考研数学一
相关试题推荐
设A是n阶正交矩阵,证明A*也是正交矩阵.
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A-B2是对称矩阵.
已知A=,则An=___________.
设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B—C=
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
设f(x)在[0,b]可导,f′(x)>0(x∈(0,b)),t∈[0,b],问t取何值时,图4.10中阴影部分的面积最大?最小?
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
已知a,b,c不全为零,证明方程组只有零解.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
随机试题
A、B两支球队举行篮球比赛,采取三场两胜制,假没不存在平局。A队在其主场获胜的概率为0.8,B队在其主场获胜的概率为0.7。已知第一场在A队的主场,第二场在B队的主场,第三场在A队的主场。则A队赢球的概率比B队赢球的概率大:
社会生产力发展水平是衡量社会进步的
患者51岁,宫颈刮片细胞学检查为巴氏Ⅲ级,阴道镜下多点活检为宫颈上皮重度非典型增生,最应采取何种治疗方法:
制定调剂室特殊药品管理制度的目的是切实落实特殊药品在调剂室的
铸造金属全冠颈部肩台的宽度通常为
为了解房价上涨情况,某课题组近日对北京、上海、广州和深圳的房价进行调查。这种调查属于()。[2014年初级真题]
下列投资工具中,适合用来筹备子女教育金的是()。
甲公司是增值税一般纳税人,2016年3月1日委托乙公司销售商品180件,商品已经发出,每件成本为70元。合同约定乙公司对外销售价格为每件120元,甲公司按不含增值税的销售价款的10%向乙公司支付手续费。3月20日乙公司对外实际销售100件。3月25日甲公司
韩信故乡淮安民间流传着一则故事——“韩信点兵”。秦朝末年,楚汉相争。有一次,韩信率1500名将士与楚军交战,战后检点人数,他命将士3人一排,结果多出2名;命将士5人一排,结果多出3名;命将士7人一排,结果又多出2名,用兵如神的韩信立刻知道尚有将士人数。已知
编写如下程序:PrivateSubForm_Click()DimiAsInteger,jAsIntegerDimnumAsIntegerDimarr(3,3)AsIntegernum=1
最新回复
(
0
)