首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求齐次方程组的基础解系.
求齐次方程组的基础解系.
admin
2016-10-26
48
问题
求齐次方程组
的基础解系.
选项
答案
对系数矩阵作初等变换,有 [*] 当a≠1时,r(A)=3,取自由变量x
4
得x
4
=1,x
3
=0,x
2
=-6,x
1
=5.基础解系是(5,一6,0,1)
T
. 当a=1时,r(A)=2.取自由变量x
3
,x
4
,则由 x
3
=1,x
4
=0得x
2
=-2,x
1
=1, x
3
=0,x
4
=1得x
2
=-6,x
1
=5, 知基础解系是(1,一2,1,0)
T
,(5,一6,0,1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/oFu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
[*]
0是n-1重特征值,另一个是3n
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
曲面(z-a)ψ(x)+(z-b)φ(y)=0与x2+y2=1,z=0所围立体的体积V=________(其中φ为连续正值函数,a>0,b>0).
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
用集合的描述法表示下列集合:(1)大于5的所有实数集合.(2)方程x2-7x+12=0的根的集合.(3)圆x2+y2=25内部(不包含圆周)一切点的集合.(4)抛物线y=x2与直线x-y=0交点的集合.
函数u=ln(x2+y2+z2)在点M(1,2,-2)处的梯度gradu|M=__________.
设S为球面:x2+y2+z2=R2,则下列同一组的两个积分均为零的是
随机试题
该患儿的诊断可能为入院后经治疗患儿的呕吐和腹泻减轻,第二天体温正常,但输液过程中突然出现惊厥,应首先考虑合并
不能用于手术时控制高血压的药物是:
郁证的病因病理应是惊悸的病因病理应是
患者男,60岁,工人。因“突发头痛,右侧肢体活动不灵,伴言语不能4h”入院。患者于4h前活动中突然头痛,以左侧头项部为重,呈持续性胀、跳痛,程摩较剧烈,同时出现右侧肢体活动不灵,伴言语不能,呕吐2~3次,呕吐物为胃内容物,非喷射状,无意识障碍及抽搐发作。在
A、附子B、苦杏仁C、延胡索D、马钱子E、炉甘石炮制有利于有效成分溶出率增加的药物是
功能失调性子宫出血,与子宫内膜息肉引起出血的鉴别是()。
【背景资料】某省一大型综合体育工程拟公开进行招标。该项目建设征地工作已经完成,建设资金已落实。建设单位的上级主管部门指定某招标代理机构为该单位办理招标事宜,代理机构对省内外投标人提出了不同的资格要求。招标文件中说明2011年2月8日为投
在Word中,对于选中的文字能够实现“复制”功能的操作()。
HowtoMakePeacewithYourWorkloadA)Swamped(忙碌的),underthegun,juststrugglingtostayabovewater:whateverofficeclic
面对高房价,作为城市“夹层人”(sandwichlayer)大学毕业生们生活得比较艰苦。最近,政府开始采取措施帮助低收入人群,特别是那些难以租到价格合适房屋的毕业生。政府将考虑年轻租房者的切身利益,建设更多的小户型公租房(publicrentalho
最新回复
(
0
)