首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
admin
2021-11-25
22
问题
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
。 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,β
3
=ξ
3
+η
0
,...,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,...,β
n-r
为方程组AX=b的一组解。 令k
0
β
0
+k
1
β
1
+k
2
β
2
+...+k
n-r
β
n-r
=0,即 (k
0
+k
1
+...+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+...+k
n-r
ξ
n-r
=0 上式两边左乘A得(k
0
+k
1
+...+k
n-r
)b=0 因为b为非零列向量,所以k
0
+k
1
+...+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+...+k
n-r
ξ
n-r
=0 注意到ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
线性无关,所以k
1
=k
2
=...=k
n-r
=0 故β
0
,β
1
,β
2
,...,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组。 设β
1
,β
2
,...,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
-β
1
,γ
2
=β
3
-β
1
,...,γ
n-r+1
=β
n-r+2
-β
1
根据定义,易证γ
1
,γ
2
,...,γ
n-r+1
线性无关,又γ
1
,γ
2
,...,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾。 所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个。
解析
转载请注明原文地址:https://kaotiyun.com/show/Tpy4777K
0
考研数学二
相关试题推荐
设实对称矩阵A=要使得A的正,负惯性指数分别为2,1,则a满足的条件是_________.
设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是().
设0≤a<b,f(χ)在[a,b]上连续,(a,b)内可导,证明在(a,b)内存在三点χ1,χ2,χ3使f′(χ)=(b+a)
证明:当x<1且x≠0时,<1.
设3阶矩阵A=(Ⅰ)t为何值时,矩阵A,B等价?说明理由;(Ⅱ)t为何值时,矩阵A,C相似?说明理由.
设A为m×n矩阵,对于齐次线性方程组(Ⅰ)Aχ=0和(Ⅱ)ATAχ=0,必有()
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
已知η1,η2,η3,η4是齐次方程组Aχ=0的基础解系,则此方程组的基础解系还可以是
随机试题
WhatdoRussia’sBelgorodprovinceandsomeschoolsinFloridaandConnecticuthaveincommon?Theyareunlikelyrecruitstothe
森林群落的分层现象主要与植物对________的利用有关。
急性盆腔炎热毒壅盛证用方为急性盆腔炎湿毒壅阻证用方为
关于医疗机构制剂的说法,正确的是
下列不属于制约工程进度计划制定因素的是()
国家提出要建设一个针对特定灾害的防灾预警系统,以减少灾害损失。共有三个互斥的建设方案,寿命期均为20年。根据统计资料分析及专家论证,如果不是建造预警系统,预期未来每年灾害经济损失为120亿元;如果建造该防灾预警系统,除需要初始投资外,每年还需要支付系统维护
3D打印技术已是全球最受关注的新兴技术之一,该技术学名为“快速成型技术”。下列关于3D打印技术的说法正确的是()。
168名毕业生在一起拍毕业照,摄影师要求全部人排成7排,后一排依次比前一排多一人,那么最后一排有()人。
联网的各个计算机共享一个公共通信信道,当一台计算机发送消息时,所有其他计算机都能“收听”到此消息。这种网络称为【】网络。
A、Playingcards.B、Preparingsnacks.C、Studyingwithapartner.D、Learninghowtodesignbridges.A选项均以动名词开头表明,本题可能考查话题或动作。对话中男士
最新回复
(
0
)