首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明: (1)在(a,b)内,g(x)≠0; (2)在(a,b)内至少存在一点ξ,使
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明: (1)在(a,b)内,g(x)≠0; (2)在(a,b)内至少存在一点ξ,使
admin
2020-03-05
31
问题
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:
(1)在(a,b)内,g(x)≠0;
(2)在(a,b)内至少存在一点ξ,使
选项
答案
(1)反证法.设存在一点c∈(a,b),g(c)=0.由g(a)=g(c)=g(b)=0,g(x)在 [a,c],[c,b]上两次运用罗尔定理可得g’(ξ
1
)=g’(ξ
2
)=0其中ξ
1
∈(a,c),ξ
2
∈(c,b).对g’(x)在[ξ
1
,ξ
2
]上运用罗尔定理,可得g’’(ξ
3
)=0,其中ξ
3
∈(ξ
1
,ξ
2
).与已知g’’(x)≠0矛盾,故g(c)≠0. (2)F(x)=f(x)g’(x)-f’(x)g(x),F(a)=0,F(b)=0,在[a,b]上运用罗尔定理,故存在ξ∈(a,b),使 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/TrS4777K
0
考研数学一
相关试题推荐
幂级数在收敛域(一1,1)内的和函数S(x)为__________.
设α,β,γ1,γ2,γ3都是4维列向量,且|A|=|α,γ1,γ2,γ3|=4,|B|=|β,2γ1,3γ2,γ3|=21,则|A+B|=_________.
已知向量组α1=(1,1,1,3)T,α2=(-0,-1,2,3)T,α3=(1,2a-1,3,7)T,α4=(-1,-1,a-1,-1)T的秩为3,则a=_______.
设f(x)二阶连续可导,=2/3,则().
设函数f(x,y)=exln(1+y)的二阶麦克劳林多项式为,则其拉格朗日型余项R2=____________.
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关的解,则该方程的通解为()
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f"(ξ)|≥|f(b)一f(a)|.
求函数u=ln(x+)在点A(1,0,1)沿点A指向B(3,一2,2)方向的方向导数。
随机试题
佛教最早在西藏传播约在()。
A、Becausetheconductorwasveryrudetohim.B、Becausetheconductorputanothermanoffthetrain.C、Becausetheconductordid
A、呼气性呼吸困难,双肺满布哮鸣音B、端坐呼吸,双肺底水泡音C、呼气性呼吸困难,两肺散在于湿啰音D、发热、咳嗽,夜间阵发性气急,肺无异常体征E、进行性呼吸困难,咳嗽,痰中带血急性肺水肿见
犬腹腔手术最理想的麻醉深度是
A.病例对照研究B.普查C.筛检D.队列研究E.抽样调查
在行政法学中监督行政关系,是国家权力机关对行政主体的监督关系;其关系主要包括:()。
根据《公路桥涵施工技术规范》(JTG/TF50—2011),桥梁工程施工中,大体积混凝土的最大胶凝材料总量不宜超过()kg/m3。
贷款风险分类法的五类贷款的定义分别是什么?
按照软硬件技术复杂程度进行分类,可以把嵌入式系统分为哪三大类?
IthadbeenbarelysixweekssinceMichaelBeltranandhisstaffreopenedhisMiamirestaurantswhenhehadtositthemdownaga
最新回复
(
0
)