首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明: (1)在(a,b)内,g(x)≠0; (2)在(a,b)内至少存在一点ξ,使
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明: (1)在(a,b)内,g(x)≠0; (2)在(a,b)内至少存在一点ξ,使
admin
2020-03-05
37
问题
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:
(1)在(a,b)内,g(x)≠0;
(2)在(a,b)内至少存在一点ξ,使
选项
答案
(1)反证法.设存在一点c∈(a,b),g(c)=0.由g(a)=g(c)=g(b)=0,g(x)在 [a,c],[c,b]上两次运用罗尔定理可得g’(ξ
1
)=g’(ξ
2
)=0其中ξ
1
∈(a,c),ξ
2
∈(c,b).对g’(x)在[ξ
1
,ξ
2
]上运用罗尔定理,可得g’’(ξ
3
)=0,其中ξ
3
∈(ξ
1
,ξ
2
).与已知g’’(x)≠0矛盾,故g(c)≠0. (2)F(x)=f(x)g’(x)-f’(x)g(x),F(a)=0,F(b)=0,在[a,b]上运用罗尔定理,故存在ξ∈(a,b),使 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/TrS4777K
0
考研数学一
相关试题推荐
函数f(x)=[丨x丨sin(x-2)]/[x(x-1)(x-2)2]存下列哪个区间内有界.
已知函数y=y(x)由方程ey+6xy+x2-1=0确定,则f’’(0)等于()
已知P-1AP=,α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是()
设f(x)有连续的导数,f(0)=0,f’(0)≠0,F(x)=∫0x(x2一t2)f(t)dt,且当x→0时,F’(x)与x3是同阶无穷小,则k等于()
二元函数f(x,y)=xy在点(e,0)处的二阶(即n=2)泰勒展开式为_________.(不要求写余项)
设f(x)二阶连续可导,=2/3,则().
设曲线L:x2+y2+x+y=0,取逆时针方向,证明:I=∫L-ysinx2dx+xcosy2dy<
设f(x)在x=0的某邻域内二阶连续可导,且f(x)/x=0.证明:级数f(1/n)绝对收敛.
求函数u=ln(x+)在点A(1,0,1)沿点A指向B(3,一2,2)方向的方向导数。
随机试题
在当前数据库中,对表“employee”做一个备份,并命名为表“tEmp”。
墨翟推崇“天志”的目的在于强调法律的()
A.持续性腹痛B.进食-疼痛-缓解C.疼痛-进食-缓解D.疼痛-排便-缓解结核性腹膜炎腹痛的规律是
冰冻甘油的红细胞的解冻温度为
王某准备将自己的一临街商业门市转手,价格协商为60万元,设应扣除项目为35万元,则业主应缴纳土地增值税()万元。
根据《仲裁法》的规定,下列各项中,不正确的是( )。
方程y2=2-x表示空间的曲面为()。
简述征地补偿费用的种类及含义。
根据《著作权法》的规定,法人作品的保护期为50年,其起算日为()。
Readthefollowingarticleandanswerquestions19-25.Forquestions19-25,choosethecorrectanswerA,B,CorD.Mark
最新回复
(
0
)