首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs是n维向量组,r(α1,α2,…,αs)=r,则( )不正确.
设α1,α2,…,αs是n维向量组,r(α1,α2,…,αs)=r,则( )不正确.
admin
2019-02-23
60
问题
设α
1
,α
2
,…,α
s
是n维向量组,r(α
1
,α
2
,…,α
s
)=r,则( )不正确.
选项
A、如果r=n,则任何n维向量都可用α
1
,α
2
,…,α
s
线性表示.
B、如果任何n维向量都可用α
1
,α
2
,…,α
s
线性表示,则r=n.
C、如果r=s,则任何n维向量都可用α
1
,α
2
,…,α
s
唯一线性表示.
D、如果r<n,则存在n维向量不能用α
1
,α
2
,…,α
s
线性表示.
答案
C
解析
利用“用秩判断线性表示”的有关性质.
当r=n时,任何n维向量添加进α
1
,α
2
,…,α
s
时,秩不可能增大,从而A正确.
如果选项B的条件成立,则任何n维向量组β
1
,β
2
,…,β
s
都可用α
1
,α
2
,…,α
s
线性表示,从而r(β
1
,β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
s
).如果取β
1
,β
2
,…,β
n
是一个n阶可逆矩阵的列向量组,则得
n=r(β
1
,β
2
,…,β
n
)≤r(α
1
,α
2
,…,α
s
)≤n,
从而r(α
1
,α
2
,…,α
s
)=n,选项B正确.
选项D是选项B的逆否命题,也正确.
由排除法,得选项应该为选项C.下面分析为什么选项C不正确.
r=s只能说明α
1
,α
2
,…,α
s
线性无关,如果r<n,则用选项B的逆否命题知道存在凡维向量不可用α
1
,α
2
,…,α
s
线性表示,因此选项C不正确.
转载请注明原文地址:https://kaotiyun.com/show/QI04777K
0
考研数学一
相关试题推荐
=______.
设k为常数,则=______.
求幂级数的收敛域及和函数S(x).
已知n维向量组(i)α1,α2,…,αs和(ii)β1,β2,…,βt的秩都为r,则下列命题中不正确的是().
已知抛物线y=ax2+bx+c,在其上的点P(1,2)处的曲率圆的方程为,求常数a,b,c的值.
点P0(2,1,1)到平面π:x+y-z+1=0的距离d=().
将函数展开成x的幂级数,并求级数的和.
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C1与C2是两个任意常数,则该非齐次线性微分方程的通解为()
行列式Dn==_______。
随机试题
在北美殖民地,______不是美国独立后构建其政治体制的重要社会文化基础。()
下列各项中,属于流动负债的是()。
A.补中益气,升提举陷B.健脾利湿,升举阳气C.补肾固脱,益气升提D.温肾纳气,升阳举陷E.收涩固脱,升举阳气患者子宫下垂,腰酸腿软,小腹下坠,夜尿多,头晕耳鸣,舌质淡,苔薄白,脉沉细。其中医治法是
城市规划实施的法律机制体现为:通过行政法律、法规的制定来为城市规划行政行为授权和提供()依据,从而为调节社会利益关系。维护经济、社会、环境的健全发展提供条件。
反映企业财务状况的会计要素一般包括()。
下列被投资企业中,应当纳入甲公司合并财务报表合并范围的有()。
用文字点缀服装,已经成为世界服装新潮流。用汉字作服装装饰,更受消费者欢迎。在日本街头,穿“真”、“诚”、“爱”、“美”等汉字装饰服装的年轻人到处可见。美国、法国等西方国家的年轻人,则喜欢在服饰上用“龙”、“凤”、“虎”、“狮”等动物名称的汉字作点缀。这是因
维护个人利益是个人行为的唯一动机。因此,维护个人利益是影响个人行为的主要因素。以下哪项如果为真,最能削弱题干论证?
Justhowdoesapersonarriveatanideaofthekindofpersonthatheis?Hedevelopsthis(1)_____ofselfthroughagraduala
Telephone,televisionradio,andtelegraphallhelppeoplecommunicatewitheachother.Becauseofthesedevices,ideasandnews
最新回复
(
0
)