首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设当x→0时,(1一 cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比(一1)高阶的无穷小,则正整数n等于
设当x→0时,(1一 cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比(一1)高阶的无穷小,则正整数n等于
admin
2017-04-24
49
问题
设当x→0时,(1一 cosx)ln(1+x
2
)是比xsinx
n
高阶的无穷小,而xsinx
n
是比(
一1)高阶的无穷小,则正整数n等于
选项
A、1
B、2
C、3
D、4
答案
B
解析
当x→0时.1一cosx~
x
2
,ln(1+x
2
)~x
2
~sinx
n
~x
n
,
一 1~ x
2
,则,当x→0时
(1一cosx)ln(1+x
2
)~
x
4
,xsinx
n
~x
n+1
,
一1~x
2
由于当x→0时,(1一cosx)ln(1+x
2
)是比xsinx
n
高阶的无穷小,
则 4>n+1;
又 当x→0时,xsinx
n
是比(
一1)高阶的无穷小,则n+1>2.故n+1=3,即n=2.
转载请注明原文地址:https://kaotiyun.com/show/Tyt4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得f’(ξ)=(a+b)/2ηf’(η).
设f(x)在[0,2]上可导,且|f’(x)|≤M,又f(x)在(0,2)内至少有一个零点,证明:|f(0)|+|f(2)|≤2M.
求下列微分方程的通解。(x+1)y’+1=2e-y
求微分方程x2y’+xy=y2满足初始条件y|x=1=1的特解。
设L:y=sinx(0≤x≤π/2),由x=0,L及y=sint围成面积S1(t);由y=sint,L及x=π/2围成面积S2(t),其中0≤t≤π/2.t取何值时,S(t)=S1(t)+S2(t)取最小值?t取何值时,S(t)=S1(t)+S2(t)取最
设A,B为同阶可逆矩阵,则().
设在点x=1处可导,求a,b的值.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
求f(x)的值域。
数列极限
随机试题
trademark
集权
狡兔有三窟,仅得免其死耳。得:
男,78岁,呕吐,腹胀2l小时,无明显腹痛,既往有消化道溃疡病史,上腹部压痛,腹肌紧张,血压80/50mmHg,脉搏108次/min,血淀粉酶250U,血钙1.7mmol/L。影响预后的因素有
A.病原体被清除B.显性感染C.隐性感染D.病原携带状态E.潜伏性感染感染过程中最常见的表现是
在我国的利率体系中,中央银行利率主要包括()。
班会一般可以分为()三类。
在知识经济勃兴的今天,阅读已不仅仅关乎个人的修身养性,更攸关一个国家的国民素质和竞争力。因为,阅读习惯和阅读能力的欠缺将极大地损害人们的想象力和创造力,而想象力和创造力是一个国家一个民族永葆活力的源泉。有一个严峻的事实我们不得不面对:当代世界的知识创新、科
根据以下资料,回答下列问题。2011年一季度我国建筑业产值为16096.4亿元。其中,建筑工程产值14220.0亿元,安装工程产值1405.2亿元,其他471.2亿元。华东六省一市相关数据见下表。下列判断不正确的有(
关系数据库规范化的目的是()
最新回复
(
0
)