首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1/2)=2,f(1)=1/2.证明:存在c∈(0,1),使得f(c)=c,证明:存在ξ∈(0,1),使得f’(ξ)+f(ξ)=1+ξ.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1/2)=2,f(1)=1/2.证明:存在c∈(0,1),使得f(c)=c,证明:存在ξ∈(0,1),使得f’(ξ)+f(ξ)=1+ξ.
admin
2022-10-12
60
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1/2)=2,f(1)=1/2.证明:存在c∈(0,1),使得f(c)=c,证明:存在ξ∈(0,1),使得f’(ξ)+f(ξ)=1+ξ.
选项
答案
令h(x)=f(x)-x,h(1/2)=f(1/2)-1/2=3/2>0,h(1)=f(1)-1=-1/2<0,由零点定理,存在c∈(1/2,1)∈(0,1),使得h(c)=0,即f(c)=c.令φ(x)=e
x
[f(x)-x],由f(0)=0,f(c)=c得φ(0)=φ(c)=0,再由罗尔定理,存在ξ∈(0,c)∈(0,1),使得φ’(ξ)=0,而φ’(x)=e
x
[f’(x)+f(x)-1-x]且e
x
≠0得f’(ξ)+f(ξ)=1+ξ.
解析
转载请注明原文地址:https://kaotiyun.com/show/hsC4777K
0
考研数学三
相关试题推荐
[*]
考虑二元函数的下面4条性质(Ⅰ)f(x,y)在点(x0,y0)处连续;(Ⅱ)f(x,y)在点(x0,y0)处的两个偏导数连续;(Ⅲ)f(x,y)在点(x0,y0)处可微;(Ⅳ)f(x,y)在点(x0,y0)处的两个偏导数存在;若用PQ表示可由性质
函数f(x)=x3一3x+k只有一个零点,则k的取值范围为
设b为常数.(Ⅰ)求曲线L:y=的斜渐近线l的方程;(Ⅱ)设L与l从x=1延伸到x→∞之间的图形的面积A为有限值,求b及A的值.
设A为n阶方阵,齐次线性方程组Aχ=0有两个线性无关的解,A*是A的伴随矩阵,则有().
设随机变量X的密度函数为则Y=一2x+3服从的分布是________.
设函数f(x)在(0,+∞)内具有二阶连续导数,且时,满足与f(1)=f′(1)=1.求函数f(r)的表达式.
设y=f(x)=,讨论f(x)的连续性,并求其单调区间、极值与渐近线.
曲线y=(x—5)的拐点坐标为________。
比较积分值的大小:设其中,D1={(x,y)|x2+y2≤R2},D2={(x,y)|x2+),y2≤2R2},D3={(x,y)||x|≤R,|y|≤R},则下述结论正确的是
随机试题
目前在WTO存在的单独关税区有()
Thisbirdisreallylovely,andI’veneverseen________one.
下列选项中不属于捕食的一项是()
土石坝施工中,当黏性土料含水量偏低时,主要应在()加水。
路基填土不得使用()等。
上个世纪60年代初以来,新加坡的人均预期寿命不断上升,到本世纪已超过日本,成为世界之最。与此同时,和一切发达国家一样,由于饮食中的高脂肪含量,新加坡人的心血管疾病发病率也逐年上升。从上述判定,最可能推出以下哪项结论?()
疼:哭
关于SDR,下列说法正确的是()。[南京大学2012金融硕士]
在"用户表"中有4个字段:用户名(文本型,主关键字),密码(文本型),登录次数(数字型),最近登录时间(日期/时间型)。在"登录界面"的窗体中有两个名为tUser和tPassword的文本框,一个登录按钮 Command0。进入登录界面后,用户输入用户名和
Somepeople’searsproducewaxlikebusylittlebees.Thiscanbeaproblemeventhoughearwax(耳垢)appearsto【S1】______animporta
最新回复
(
0
)