首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1/2)=2,f(1)=1/2.证明:存在c∈(0,1),使得f(c)=c,证明:存在ξ∈(0,1),使得f’(ξ)+f(ξ)=1+ξ.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1/2)=2,f(1)=1/2.证明:存在c∈(0,1),使得f(c)=c,证明:存在ξ∈(0,1),使得f’(ξ)+f(ξ)=1+ξ.
admin
2022-10-12
52
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1/2)=2,f(1)=1/2.证明:存在c∈(0,1),使得f(c)=c,证明:存在ξ∈(0,1),使得f’(ξ)+f(ξ)=1+ξ.
选项
答案
令h(x)=f(x)-x,h(1/2)=f(1/2)-1/2=3/2>0,h(1)=f(1)-1=-1/2<0,由零点定理,存在c∈(1/2,1)∈(0,1),使得h(c)=0,即f(c)=c.令φ(x)=e
x
[f(x)-x],由f(0)=0,f(c)=c得φ(0)=φ(c)=0,再由罗尔定理,存在ξ∈(0,c)∈(0,1),使得φ’(ξ)=0,而φ’(x)=e
x
[f’(x)+f(x)-1-x]且e
x
≠0得f’(ξ)+f(ξ)=1+ξ.
解析
转载请注明原文地址:https://kaotiyun.com/show/hsC4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
设积分区域D={(x,y)|x2+y2≤x+y},计算二重积分(x2+xy+y2)dσ.
[*]
求幂级数的收敛域D与和函数S(x).
设y=f(x)二阶可导,f’(x)≠0,它的函数是x=φ(y),又f(0)=1,f’(0)=,f’’(0)=-1,则=_________________________。
将函数f(x)=展开成x-2的幂级数,并求出其收敛域。
求曲线与x轴围成的区域绕x轴、y轴形成的几何体体积.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x);
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x=0时,().
令sinx-cosx=a(sinx+2cosx)+b(sinx+2cosx)’,则[*]
随机试题
某企业设备的运行周期为253小时,在其运行期间共运行了236小时,其中发生了5次故障,故障时间分别为3.4小时,3小时,3.8小时,2.6小时,4.2小时。试求该设备的故障率。
在需要层次理论中,地位属于()
直到不久前,科学家们才排除了月球上存在生物的可能性。
某成年男性因全身肌痛、面部水肿、视力障碍来医院就诊。自述1个月前曾参加过一个大型会议,会议期间曾聚餐,与会者中已有数十人出现全身肌痛等症状。最可能的诊断是
下列有关抗菌药作用机制的叙述哪项是错误的
建设项目管理的类型可以按( )几方面划分。
国库是办理预算收入的收纳、划分、留解和库款支拨的专门机构,也称中央国库。()
相对于其他职业生涯发展阶段来说,员工在()阶段更加注重自己的经济收入。
某投资者计划2019年年初购置一处现行市场价格为1000万元的房产。由于资金不足,房主提出了四种延期付款方案供其选择。方案一:2020年至2029年,每年年初付款155万元。方案二:2024年至2030年,每年年初付款280万元。方案三
卢梭在《论人类不平等的起源和基础》中说道:“我认为,在人类的一切知识中,最有用但也最不完善的知识就是关于人的知识。”马克思的唯物史观则破解了“人是什么”之谜,指出人的本质在其现实性上是()。
最新回复
(
0
)