设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.

admin2017-08-28  31

问题 设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.   

选项

答案(定义法) 若有一组数k,k1,k2,...,kt,使得 kβ+k1(β+α1)+k2(β+α2)+…kt(β+αt)=0, ① 则因α1,α2,...,αt是Ax=0的解,知Aαi=0(i=1,2,…,t),用A左

解析 (用秩)  经初等变换向量组的秩不变.把第1列的-1倍分别加至其余各列,有
(β,β+α1,β+α2,…,β+αt)→(β,α1,α2,...,αt).
因此    r(β,β+α1,β+α2,…,β+αt)=r(β,α1,α2,...,αt).
由于α1,α2,...,αt是基础解系,它们是线性无关的,秩r(α1,α2,...,αt)=t,又β必不能由α1,α2,...,αt线性表出(否则Aft=0),故r(α1,α2,...,αt,β)=t+1.
所以    r(β,β+α1,β+α2,…,β+αt)=t+1.
即向量组β,β+α1,β+α2,…,β+αt线性无关.
转载请注明原文地址:https://kaotiyun.com/show/U2r4777K
0

最新回复(0)