设f(x)在(-1,1)内二阶连续可导,且f″(x)≠0.证明: (1)对(-1,1)内任一点x≠0,存在唯一的0(x)∈(0,1).使得 f(x)=f(0)+xf′[θ(x)x];

admin2022-08-19  52

问题 设f(x)在(-1,1)内二阶连续可导,且f″(x)≠0.证明:
(1)对(-1,1)内任一点x≠0,存在唯一的0(x)∈(0,1).使得
f(x)=f(0)+xf′[θ(x)x];

选项

答案(1)对任意x∈(-1,1),根据微分中值定理,得 f(x)=(0)+xf′[θ(x)x],其中0<0(x)<1. 因为f″(x)∈C(-1,1)且f″(x)≠0,所以f″(x)在(-1,1)内保号,不妨设f″(x)>0, 则f′(x)在(-1,1)内单调增加,又由于x≠0,所以θ(x)是唯一的. (2)由泰勒公式,得 f(x)=f(0)+f′(0)x+[f″(ξ)/2!]x2,其中ξ介于0与x之间, 而f(x)=f(0)+xf′[θ(x)x],所以有 f′[θ(x)x]=f′(0)+[f″(ξ)/2!][*]{f′[xθ(x)]-f′(0)}/xθ(x)·θ(x)=f″(ξ)/2!, 令x→0,再由二阶导数的连续性及非零性,得[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/U3R4777K
0

最新回复(0)