首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量. (1)求A的特征值; (2)求矩阵A.
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量. (1)求A的特征值; (2)求矩阵A.
admin
2019-08-23
33
问题
设A是三阶实对称矩阵,r(A)=1,A
2
-3A=O,设(1,1,-1)
T
为A的非零特征值对应的特征向量.
(1)求A的特征值;
(2)求矩阵A.
选项
答案
(1)A
2
-3A=0[*]|A||3E-A|=0[*]λ=0,3,因为r(A)=1,所以λ
1
=3,λ
2
=λ
3
=0. (2)设特征值0对应的特征向量为(χ
1
,χ
2
,χ
3
)
T
,则χ
1
+χ
2
-χ
3
=0,得0对应的特征向量为α
2
=(-1,1,0)
T
,α
3
=(1,0,1)
T
,令 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/U7N4777K
0
考研数学二
相关试题推荐
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,…,αr,β的线性相关性.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉击入木板的深度成正比,在击第一次时,将铁钉击入木板1cm.如果铁锤每次打击铁钉所作的功相等,问铁锤击第二次时,铁钉又击入多少?
求微分方程xy"+3y’=0的通解.
计算二重积分,其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.
计算定积分
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.求可逆矩阵P,使得P-1AP=A.
设D是由曲线,直线x=a(a>0)及x轴所围成的平面图形,Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积,若Vy=10Vx,求a的值。
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
周期函数y=f(x)在(-∞,+∞)内可导,周期为4,且则y=f(x)在点(5,f(5))处的切线斜率为()
随机试题
运动中ATP消耗后的补充速度成为影响运动能力的重要因素。()
下列关于辅导目标制定原则的说法中不正确的是()
由日本管理大师石川馨所提出的战略分解工具是【】
A、较稳定,遇湿热不起变化,但可压性和流动性较差的药物B、较不稳定,遇湿热分解,可压性、流动性均不好,量较大的药物C、可压性尚可的立方结晶型药物D、较不稳定,遇湿热分解,其粉末流动性尚可,量较小的药物E、液体状态易挥发的
市场预测中,预测过程可视为一个()过程。
皮亚杰认为儿童的道德发展大致分为两个阶段,10岁前称为他律道德,10岁后称为______。
儿童体格发育最重要及最常用的形态指标是()。
圆形的周长扩大至原来的2倍,它的面积比原来增大( )。
VIP客户端应用程序通常有三种类型:传统的FTP命令行、【 】和VIP下载工具。
Whymoreandmorepeoplebecameinterestedinbecomingcomputerprogrammers?Whichkindofcompanyisfavoredbymostemployees
最新回复
(
0
)