首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量 α1一α2,α1+2α2—2α3,(α2一α1),α1—3α2+2α3, 中,对应齐次线性方程组Ax=0解向量的共有( )
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量 α1一α2,α1+2α2—2α3,(α2一α1),α1—3α2+2α3, 中,对应齐次线性方程组Ax=0解向量的共有( )
admin
2018-12-19
123
问题
已知α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个不同的解,那么向量
α
1
一α
2
,α
1
+2α
2
—2α
3
,
(α
2
一α
1
),α
1
—3α
2
+2α
3
,
中,对应齐次线性方程组Ax=0解向量的共有( )
选项
A、4。
B、3。
C、2。
D、1。
答案
A
解析
由Aα
i
=b(i=1,2,3)有
A(α
1
—α
2
)=Aα
1
—Aα
2
=b—b=0,
A(α
1
+α
1
—2α
3
)=Aα
1
+Aα
2
—2Aα
3
=b+b一2b=0,
A(α
1
一3α
2
+2α
3
)—Aα
1
—3Aα
2
+2Aα
3
=b一3b+2b=0,
即α
1
一α
2
,α
1
+α
2
—2α
3
,
(α
2
一α
1
),α
1
一3α
2
+2α
3
均是齐次方程组Ax=0的解。故选A。[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/k3j4777K
0
考研数学二
相关试题推荐
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表示.
设A是m×n矩阵,则齐次线性方程组Ax=0仅有零解的充分条件是()
设矩阵A=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
计算二重积分其中
(2014年)设平面区域D={(χ,y)|1≤χ2+y2≤4,χ≥0,y≥0},计算
(2001年)一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
随机试题
Ifyouwanttolearnanewlanguage,theveryfirstthingtothinkaboutiswhyDoyouneeditfora【C1】______reason,suchasyo
某装饰装修工程的下列单项合同额中属于中型工程的是()万元。
守信是诚实品格必然导致的行为,也是诚实与否的判断依据和标准。()
《中华人民共和国教育法》中将我国现阶段的教育方针表述为:“教育必须为社会主义现代化建设服务、为人民服务,必须与()相结合,培养德、智、体、美等方面全面发展的社会主义建设者和接班人。
研发中心的员工是全公司最优秀的,小赵是研发中心的员工,所以他是全公司最优秀的。根据上述文字,该推理是()。
(08年)设f(x)是连续函数,(I)利用定义证明函数F(x)=∫0xf(t)dt可导,且F’(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数G(x)=2∫0xf(t)dt一x∫02f(t)dt也是以2为周期的周期函数.
在Windows[资源管理器]的左窗口中,若显示的文件夹图标前带有标志,则意味着该文件夹(43)。
在命令窗口执行SQL命令时,若命令要占用多行,续行符是()。
有以下程序:structS{intn;inta[20];};voidf(int*a,intn){inti;for(i=0;i<n-1;i++)a[i]+=i;}mainf(){inti;stru
WhyLearningSpanish?TheimportanceofSpanishisgrowinginEurope.Spanish,with400millionspeakers,isthefourthmostcom
最新回复
(
0
)