首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2019-02-20
56
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2X+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令f’(x)=0,可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)最小值.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时,f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时,f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时,需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/UFP4777K
0
考研数学三
相关试题推荐
设矩阵A=,已知齐次线性方程组Ax=0的解空间的维数为2,求a的值并求出方程组Ax=0的用基础解系表示的通解.
求曲线y=∫0xf(t)dt与y=2x—1交点的个数.其中f(x)在[0,1]上连续,f(x)<1.
假设随机变量X和Y的联合概率密度为f(x,y)=(1)求未知常数c;(2)求概率P{X<y};(3)求X和Y的联合分布函数F(x,y);(4)求X和Y的分布函数F1(x)和F2(y).
假设随机变量X的概率密度为fX(x)=而随机变量Y在区间(0,X)上服从均匀分布.试求:(1)随机变量X和Y的联合概率密度f(x,y);(2)随机变量Y的概率密度fY(y).
假设随机变量X和Y独立同分布.P{X=0}=P{Y=0}=1一p,P{X=1}=P{Y=1}=p.随机变量Z=问p取何值时,X和Z独立?这时X,Y,Z是否相互独立?
设随机变量U和V的可能取值均为1和一1,且P(U=1)=.(1)求U和V的联合分布律;(2)求协方差Cov(U+1,V一1);(3)求关于x的方程x2+Ux+V=0至少有一个实根的概率.
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数).(1)试证:∫—aaf(x)g(x)dx=A∫0ag(x)dx;(2)计算:|sinx|arctanexdx.
设A,B为两个任意事件,证明:|P(AB)一P(A)P(B)|≤.
函数f(x)=[丨x丨sin(x-2)]/[x(x-1)(x-2)2]存下列哪个区间内有界.
随机试题
评估人员通过量化各种政策或行政方案的总成本和总效果来对它们进行对比从而提出建议的评估方法是【】
下列哪种疾病与输血无关?
A.牛肉膏蛋白胨B.煌绿、胆盐、硫代硫酸钠、枸橼酸盐C.乳糖D.胆盐E.中性红SS琼脂培养基是选择性很强的培养基,成分较多,其抑制剂为
下列项目中,能同时影响资产和负债发生变化的是()。
下列关于客户理财需要和目标分析的说法中,正确的是()。
()是发达国家企业实现技术国际化的最常用办法。
里坊制源于出现在秦朝的闾里制,并且继承了它的管理办法。()
马克思说:“一切商品对它们的所有者是非使用价值,对它们的非所有者是使用价值”。这句话的含义是
当各项目小组成员对职能经理和项目经理双重负责的时候,项目团队建设经常会显得比较复杂。对这种双重负责关系的有效管理通常是(45)的职责。
TheCarnegieFoundationreportsaysthatmanycollegeshavetriedtobe"allthingstoallpeople".Indoingso,theyhaveincre
最新回复
(
0
)