首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2019-02-20
45
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2X+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令f’(x)=0,可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)最小值.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时,f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时,f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时,需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/UFP4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关.(2)求A的特征值、特征向量.
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设资本总量K是时间t的函数K=K(t),称为资本函数,其导数I(t)=K’(t)为投资者在t时刻单位时间内的净投资.设净投资函数I(t)=(百万元/年),t=0时,初始资本为100百万元,试求:(1)资本函数K=K(t);(2)从第4年
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设随机变量X~N(μ,σ2),σ>0,其分布函数F(x)的曲线的拐点为(a,b),则(a,b)为()
设函数f(x)在[a,b]有定义,在开区间(a,b)内可导,则
幂级数的收敛区间为_______.
随机试题
水样中氯离子含量大于30mg/L时产生干扰,应加硫酸银除去。
“TRUE/FALSE”数据类型为()
设z=u2+v2,v=x+y,v=x-y,则=[].
A.维A酸B.过氧化苯甲酰C.克林霉素磷酸酯D.米诺环素+阿达帕林凝胶E.维A酸+克林霉素磷酸酯伴感染显著者可应用
我国中小学开设的语、数、外等课程属于()。
从一个装有水的水池中向外排水,规定每周二、四、六每天排出剩余水量的1/3,其余日期每天排出剩余水量的1/2。如此连续操作6天后,水池中剩余相当于总容量1/72的水。问最开始时水池中的水量最多相当于总容量的:
原有权利
Yes,Isupposethingsmighthavebeendifferent,butwhoknows?Ihavemoretimetothinkthesedays,ofcourse,andit’sfunny
原型法生命周期提供了一个完整的、灵活的、近于动态的需求定义技术,下列()不是它的特征。
9
最新回复
(
0
)