首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2019-02-20
39
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2X+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令f’(x)=0,可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)最小值.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时,f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时,f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时,需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/UFP4777K
0
考研数学三
相关试题推荐
某公司投资20百万元建一条生产线,投产后其追加成本和追加收入(成本和收入对时间t的变化率,类似于边际函数的概念)分别为G(t)=5+2t2/3(百万元),E(t)=17一t2/3(百万元).试确定该生产线使用多长时间停产可使公司获得最大利润,最大利润是多少
求曲线y=—2在其拐点处的切线方程.
求由曲线y=e—xsinx的x≥0部分与x轴所围成的平面图形的面积.
求曲线y=的渐近线.
设A为n阶矩阵.(1)已知β为n维非零列向量,若存在正整数k,使得Ak≠0,但Ak+1β=0,则向量组β,Aβ,A2β,…,Akβ线性无关;(2)证明:齐次线性方程组Anx=0与An+1x=0是同解线性方程组;(3)证明:r(
设函数f(x)的一个原函数为,则∫x2f(1一x3)dx=__________.
已知x的概率密度f(x)=,试求:(1)未知系数a;(2)X的分布函数F(x),(3)x在区间(0,)内取值的概率.
袋中装有4枚正品均匀硬币,2枚次品均匀硬币,次品硬币的两面均印有国徽.在袋中任取一枚,将它投掷了3次,已知每次都得到国徽,求此硬币是正品的概率.
设随机变量X~N(μ,σ2),σ>0,其分布函数F(x)的曲线的拐点为(a,b),则(a,b)为()
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xn与Y1,Y2,…,Yn是分别来自总体X与Y的两个相互独立的简单随机样本,统计量()
随机试题
下列行业中,适合采用分批法核算其产品成本的有()。
渗透压
可用于治疗尿崩症的药物是
静电引起爆炸和火灾的条件之一是()。
施工组织设计在约定时间内组织专业监理工程师提出意见后,由( )审核签认。
某工程项目,建设单位与施工单位按照《建设工程施工合同(示范文本)》签订了施工合同。合同工期为9个月,合同总价为840万元。项目监理机构批准的施工进度计划见图3(时间单位:月),各项工作均按照最早时间安排且匀速施工,施工单位的部分报价见表3。施工合同中约定:
测度数据离散程度的相对指标是( )。
对发生法律效力的判决,一方拒绝履行的,对方当事人可以向人民法院申请执行,申请执行的期限从法律文书规定履行期间的最后一日起开始计算,如双方均为法人,该期限是()。
(1)Mr.FosterwasleftintheDecantingRoom.TheD.H.C.andhisstudentssteppedintothenearestliftandwerecarriedupt
TherewasatimenotlongagowhennewsciencePh.D.sintheUnitedStateswereexpectedtopursueacareerpathinacademia(学术
最新回复
(
0
)