首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P一1AP.
设A为3阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P一1AP.
admin
2021-01-19
20
问题
设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
(Ⅰ)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
一1
AP.
选项
答案
(Ⅰ)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用Aα
1
=一α
1
,Aα
2
=α
2
, 一k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①一②,得 2k
1
α
1
一k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而由③式知k
1
=k
3
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,α
2
,Aα
3
]=[一α
1
,α
2
,α
2
+α
3
]=[α
1
,α
2
,α
3
][*] 由(Ⅰ)知矩阵P可逆,用,1左乘上式两端,得 [*]
解析
本题(Ⅰ)也可用反证法:若α
1
,α
2
,α
3
线性相关,则由α
1
,α
2
线性无关知,存在常数k
1
,k
2
,使α
3
=k
1
α
1
+k
2
α
2
,用A左乘两端,则可推出矛盾.
转载请注明原文地址:https://kaotiyun.com/show/UM84777K
0
考研数学二
相关试题推荐
设f(x)=x3一6x2+11x一5,则f(A)=__________.
若向量组(Ⅰ):α1=(1,0,0)T,α2=(1,1,0)T,α3=(1,1,1)T可由向量组(Ⅱ):β1,β2,β3,β4线性表示,则向量组(Ⅱ)的秩为______.
微分方程xy’’+3y’=0的通解为__________。
设线性方程组有非零解,则参数a,b,c,d,e应满足条件___________.
曲线的斜渐近线方程为__________。
设函数f(χ)(χ≥0)可微,且f(χ)>0.将曲线y=f(χ),χ=1,χ=a(a>1)及χ轴所围成平面图形绕χ轴旋转一周得旋转体体积为[a2f(a)-f(1)].若f(1)=,求:(1)f(χ);(2)f(χ)的极值.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)。证明xn存在,并求该极限;
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是().
随机试题
某企业2008年至2012年的产销量和资金需要数置见下表所示: 要求:利用回归分析法预测固定的资金需要量为()万元。
脑的血液供应来自颈内动脉和椎动脉,颈内动脉入颅腔后依次分支供应大脑半球的前3/5,下列哪条动脉不是来源于颈内动脉
A.三七B.黄芩C.商陆D.麦冬E.陈皮属于甾体皂苷的是()。
关税
对于欧式看跌期权而言,如果期权到期期限延长,期权的价格会()
合格境外机构投资者参与我国A股交易时,其结算( )。
2007年7月1日A公司对外提供一项为期8个月的劳务,合同总收入465万元。2005年末无法可靠地估计劳务结果。2007年发生的劳务成本为234万元,预计已发生的劳务成本能得到补偿的金额为180万元,则A公司2007年该项业务应确认的收入为()万元
下列出口货物完税价格确定方法中,符合关税法规定的有()。(2003年)
会计欺诈是会计主体在会计活动中,故意形成虚假会计信息,或者故意披露虚假会计信息的不法行为。根据上述定义,下列属于会计欺诈的是:
A、Becausetheydidnoteatotheranimals.B、Becausetheywereusefulforprotection.C、Becausetheyweregoodhunters.D、Because
最新回复
(
0
)