首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设g(x)=∫0xf(u)du,其中则g(x)在区间(0,2)内
设g(x)=∫0xf(u)du,其中则g(x)在区间(0,2)内
admin
2020-03-01
53
问题
设g(x)=∫
0
x
f(u)du,其中
则g(x)在区间(0,2)内
选项
A、无界.
B、递减.
C、不连续.
D、连续.
答案
D
解析
转载请注明原文地址:https://kaotiyun.com/show/UMA4777K
0
考研数学二
相关试题推荐
设A为三阶矩阵,且|A|=3,则|(-2A)*|=_______.
设矩阵A=,B=A2+5A+6E,则=________.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,
设函数f(χ)=其中g(χ)二阶连续可导,且g(0)=1.(1)确定常数a,使得f(χ)在χ=0处连续;(2)求f′(χ);(3)讨论f′(χ)在χ=0处的连续性.
设f(χ)=,求f(χ)的连续区间及间断点.
[2012年]设an>0(n=1,2,3,…),Sn=a1+a2+a3+…+an,则数列{Sn}有界是数列{an}收敛的().
[2011年](I)证明对任意的正整数,都有成立;(Ⅱ)设an=1+一lnn(n=1,2,…),证明数列{an}收敛.
(2006年)设数列{χn}满足0<χ1<π,χn+1=sinχn(n=1,2,…).(Ⅰ)证明χn存在,并求该极限;(Ⅱ)
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x,y0)=f(x0,y0),f(x0,y)
设则du|(1,1,1)=_______.
随机试题
下列哪些属于行政违法的特征()。
下列哪项是腺垂体功能减退症最常见的病因
患者男性,17岁。拔牙两天后,出现寒战,高热,伴咳嗽、咳痰,迁延未愈,12天后突然咳出大量脓臭痰及坏死组织,并有咯血。查体:体温39℃,脉搏89次/分,右肺部叩诊呈浊音,可于右肺底听到湿哕音,实验室检查:WBC28×109/L,中性粒细胞0.92,核左移明
关于执行程序中的管辖权异议,说法正确的是:()
在某工程网络计划中,工作M的最早开始时间和最迟开始时间分别为第12d和第15d,其持续时间为6d。工作M有3项紧后工作,它们的最早开始时间分别为第21d,第24d,第28d,则工作M的自由时差为( )d。
如果相关系数r为正,说明()。
某公司5月发生下列业务(期初无在产品):(1)生产甲产品领用材料50000元,生产乙产品领用材料40000元,车间一般性耗用材料1000元。(2)分配本月职工工资100000元,其中,甲产品生产工人工资60000元,乙产品生产工人工资2
特殊情况越级向上行文,应抄送给()。
负荷在预计值附近随机变动的概率分布属于()。
科学家发现,儿童时期不接触细菌和病菌,是5岁以下人群糖尿病病例近年来急剧增加的主要原因之一。而那些生活在农村的孩子由于更早接触到带菌的物质,有更多机会与宠物相处,患过敏症、哮喘和湿疹等疾病的几率反而很低。所以,将细菌消灭得过于彻底的环境可能反而会给儿童的健
最新回复
(
0
)