首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求 A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求 A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
admin
2014-04-23
66
问题
设A是n阶矩阵,A的第i行、第i列的元素a
ii
=i.j,求
A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
选项
答案
由A的特征多项式[*]故A有特征值.[*]当λ
1
=λ
2
=…=λ
n-1
=0时,方程组(λE一A)x=0就是方程组Ax=0,其同解方程组是x
1
+2x
2
+…+nx
n
=0,解得对应的线性无关特征向量为ξ
1
=[一2,1,0,…,0]
T
,ξ
2
=[一3,0,1,0,…,0]
T
,…,ξ
n-1
=[一n,0,…,0,1]
T
.当[*]时,(λ
n
E—A)x=0,对系数矩阵作初等行变换,得 [*][*] 方程组的同解方程组为[*]得对应的特征向量为ξ
n
=[1,2,…,n]
T
.从而知A有n个线性无关特征向量,A~A,取 [*]则 [*] 法二 (I)由题设条件[*]中第i行元素是第1行的i倍.故有[*]其中α=[1,2,…,n]
T
≠0.故r(A)=1. (Ⅱ)因A
2
=(αα
T
)(αα
T
)=α(α
T
α)α
T
=(α
T
α)A=[*],故知A的特征值为0,[*]当λ=0时,对应的特征向量满足Ax=αα
T
x=0,因α
T
α.[*] 在方程αα
T
x=0两边左乘α
T
.得 α
T
(αα
T
x)=(α
T
α)α
T
x=0。得α
T
x=0.当α
T
x=0时,两边左乘α,得αα
T
x=0,故方程组为αα
T
x=0与α
T
x=0是同解方程组.只需解方程组α
T
x=0,解得线性无关的特征向量为ξ
1
=[一2,1,0,…,0]
T
,ξ
2
=[一3,0,1,0,…,0]
T
,…,ξ
n-1
=[一n,0,…,0.]
T
.又[*]故A有一个非零特征值[*]当[*]时,由(λ
n
E—A)X=(α
T
αE—αα
T
)x=0。由观察知,x=α时,有(α
T
αE一αα
T
)α=(α
T
α)α=(αα
T
)α=(α
T
α)α=α(α
T
α)=0,故α=[1,2,…,n]
T
=ξ
n
是对应[*]的特征向量.即A有n个线性无关的特征向量,A能相似于对角阵.(下同方法一)
解析
转载请注明原文地址:https://kaotiyun.com/show/UN54777K
0
考研数学一
相关试题推荐
设函数问f(x)在x=1处是否连续?若不连续,修改f(x)在x=1处的定义,使之连续.
求下列微分方程的初值问题.
设y1(x)和y2(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y1(x),y2(x)能构成该方程的通解的充分条件为()
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:存在与第二问中ξ不同的η∈(a,b),使得
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,试证在(0,1)内至少存在一点ξ,使
设A,B为n阶可逆矩阵,则().
多项式f(x)=中x3项的系数为________.
设连续函数f(x)满足:19f(x)+∫0xtf(x-t)dt=sinx+x2+1,求f(x).
求一个以y1=tet,y2=sin2t为两个特解的四阶常系数齐次线性微分方程,并求其通解.
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为()
随机试题
关于图书书稿审稿后编辑与作者的联系,说法错误的是()。
我国某进出口公司甲(卖方)与美国某贸易公司乙(买方)以CIF芝加哥条件签订了一份出口5000吨小麦的合同。货物由中国人民保险公司办理了海洋运输货物保险后按时由承运人天建国际海洋运输公司装船运输。因在海上遭遇暴风雨袭击,迟延四个星期到达目的港,并因船员的过失
患者,男性,36岁。中午饮酒后突然出现上腹中部剧烈刀割样疼痛,向腰背部呈带状放射,继而呕出胆汁,伴高热。急诊入院体检:急性痛苦面容,全腹疼痛,腹肌紧张。紧急处理措施中最重要的是
某化合物的结构式为,该有机化合物不能发生的化学反应类型是()。
机械设备进场前,承包单位应向项目()报送进场设备清单。
注册地与实际管理机构所在地均在法国的某银行,取得的下列各项所得中,应按规定缴纳我国企业所得税的有()。
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f′(c)|≤2a+b/2.
Mysisteristhreeyears________thanme.
新名词
Smalldogsgenerallylivelongerthanbigdogs.Butbodysizeisn’ttheonlyfactorthatdetermineshowlongdogssurvive.Perso
最新回复
(
0
)