首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求 A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求 A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
admin
2014-04-23
80
问题
设A是n阶矩阵,A的第i行、第i列的元素a
ii
=i.j,求
A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
选项
答案
由A的特征多项式[*]故A有特征值.[*]当λ
1
=λ
2
=…=λ
n-1
=0时,方程组(λE一A)x=0就是方程组Ax=0,其同解方程组是x
1
+2x
2
+…+nx
n
=0,解得对应的线性无关特征向量为ξ
1
=[一2,1,0,…,0]
T
,ξ
2
=[一3,0,1,0,…,0]
T
,…,ξ
n-1
=[一n,0,…,0,1]
T
.当[*]时,(λ
n
E—A)x=0,对系数矩阵作初等行变换,得 [*][*] 方程组的同解方程组为[*]得对应的特征向量为ξ
n
=[1,2,…,n]
T
.从而知A有n个线性无关特征向量,A~A,取 [*]则 [*] 法二 (I)由题设条件[*]中第i行元素是第1行的i倍.故有[*]其中α=[1,2,…,n]
T
≠0.故r(A)=1. (Ⅱ)因A
2
=(αα
T
)(αα
T
)=α(α
T
α)α
T
=(α
T
α)A=[*],故知A的特征值为0,[*]当λ=0时,对应的特征向量满足Ax=αα
T
x=0,因α
T
α.[*] 在方程αα
T
x=0两边左乘α
T
.得 α
T
(αα
T
x)=(α
T
α)α
T
x=0。得α
T
x=0.当α
T
x=0时,两边左乘α,得αα
T
x=0,故方程组为αα
T
x=0与α
T
x=0是同解方程组.只需解方程组α
T
x=0,解得线性无关的特征向量为ξ
1
=[一2,1,0,…,0]
T
,ξ
2
=[一3,0,1,0,…,0]
T
,…,ξ
n-1
=[一n,0,…,0.]
T
.又[*]故A有一个非零特征值[*]当[*]时,由(λ
n
E—A)X=(α
T
αE—αα
T
)x=0。由观察知,x=α时,有(α
T
αE一αα
T
)α=(α
T
α)α=(αα
T
)α=(α
T
α)α=α(α
T
α)=0,故α=[1,2,…,n]
T
=ξ
n
是对应[*]的特征向量.即A有n个线性无关的特征向量,A能相似于对角阵.(下同方法一)
解析
转载请注明原文地址:https://kaotiyun.com/show/UN54777K
0
考研数学一
相关试题推荐
利用代换y=u/cosx将y“cosx-2y‘sinx+3ycosx=ex化简,并求原方程的通解.
设α1,α2,α3为两两正交的单位向量,又β≠0且α1,α2,α3,β线性相关,令(Ⅰ)证明:β可由α1,α2,α3唯一线性表示;(Ⅱ)验证β为矩阵A的特征向量,并求相应的特征值.
曲线的斜渐近线为________________.
设矩阵A=且A不可以相似对角化,则a=______________.
设A为3阶实对称矩阵,且A2=4E,又tr(A)=2,且α=满足A*α=4α.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q使得二次型f=XTAX经过正交变换化为标准形.
设z=f(x,y)在有界闭区域D上二阶连续可偏导,且在D内有则下列正确的是().
设矩阵A=,B=,且存在矩阵X,使得AX=B+2X.求参数a,b;
设f(x)为连续函数,f(0)=1,令F(t)=f(x2+y2)dσ(t≥0),则F”(0)=()
设x≥0,记x到2k的最小距离为f(x),k=0,1,2,….证明f(x)是以2为周期的周期函数;
求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
随机试题
求下列平面曲线绕轴旋转所围成立体的体积:x=a(t-sint),y=a(1-cost)(a>0).0≤t≤2π,绕x轴;
突发昏厥,大小便停止,息粗,脉实,辨证为()
矽肺的X线表现有
热力管道和电缆之间的最小净距为0.5m,电缆地带的土壤受热的附加温度在任何季节都不大于()
常用的惯性除尘器有()等。
梅肯鲍姆疗法在技能获得和复述阶段中采用认知应对训练,关注的是()。
下图是某城市的空间资料,读某城市的地理信息经数字化处理后得出的统计资料,回答下列问题。据地价和土地利用图层,推断该区域交通图层最有可能是()。
生活中有诱惑也有陷阱。请以“学会说‘不’”为主题做一个演讲。
The______oftheU.S.S.R.hasbeenthemostmomentouseventofthelastquarterofthe20thcentury.
A、Neitheroftheirwatcheskeepsgoodtime.B、Thewoman’swatchstopped3hoursago.C、Theman’swatchgoestoofast.D、It’stoo
最新回复
(
0
)