首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设y1,y2是一阶线性非齐次微分方程y′+P(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则( ).
[2010年] 设y1,y2是一阶线性非齐次微分方程y′+P(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则( ).
admin
2019-05-10
43
问题
[2010年] 设y
1
,y
2
是一阶线性非齐次微分方程y′+P(x)y=q(x)的两个特解.若常数λ,μ使λy
1
+μy
2
是该方程的解,λy
1
一μy
2
是该方程对应的齐次方程的解,则( ).
选项
A、λ=1/2,μ=1/2
B、λ=一1/2,μ=一1/2
C、λ=2/3,μ=1/3
D、λ=2/3,μ=2/3
答案
A
解析
将λy
1
+μy
2
代入非齐次方程,同时将λy
1
一μy
2
代入对应的齐次方程,可得到关于λ,μ的两个方程,解之即可求得λ,μ.
利用解的定义和性质求之.由命题1.6.2.1(2)知,λy
1
一μy
2
是y′+P(x)y=0的解,故
(λy-μy
2
)′+P(x)(λy
1
一μy
2
)=0, 即 λ[y′
1
+P(x)y
1
]一μ[y′
2
+p(x)y
2
]=0,
亦即λq(x)-μq(x)=(λ一μ)q(x)=0,故λ=μ.又由题设知y
1
,y
2
为y′+p(x)y=g(x)的解,故
y′
1
+P(x)y
1
=q(x), y′
2
+P(x)y
2
=q(x),
因λy
1
+μy
2
是y′+P(x)y=q(x)的解,故
(λy
1
+μy
2
)′+P(x)(λy
1
+μy
2
)=q(x).
即 λ[y′
1
+P(x)y
1
]+μ[y′
2
+P(x)y
2
]=λq(x)+μq(x)=(λ+μ)q(x)=q(x).
从而μ+λ=1,又由λ=μ得λ=μ=1/2.仅(A)入选.
转载请注明原文地址:https://kaotiyun.com/show/UNV4777K
0
考研数学二
相关试题推荐
=_______.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
求不定积分∫cos(lnχ)dχ.
求二次型f(χ1,χ2,χ3)=(χ1+χ2)2+(χ2-χ3)2+(χ3+χ1)2的秩,正负惯性指数p,q.
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
设f(χ)是以4为周期的可导函数,f(1)=,且,求y=f(χ)在(5,f(5))处的法线方程.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.(1)求A的全部特征值;(2)当k为何值时,A+kE为正定矩阵?
确定常数a,b,c,使得=c.
随机试题
以秦汉为主,包括战国及三国,为古代桥梁的创建发展时期。东汉是我国建筑史上的一个灿烂辉煌的发展时期,发明了人造建筑材料,创造了砖结构体系及以石料为主体的石结构体系,进而演进为新的拱券结构。在建筑艺术造型方面,又融合了佛教东渐的宗教色彩。秦汉两代,大兴土木,阿
化学反应器的物料衡算是以()为基础的物料平衡计算。
Herearetwolettersfromourreadersexpressingtheirconcernaboutschoolassessment(评价):Studentsshouldbeallowedtos
某施工工地升降机操作工刘某未注意下方有人即按启动按钮,造成维修工张某当场被挤压身亡。刘某报告事故时隐瞒了自己按下启动按钮的事实。关于刘某行为的定性,下列哪一选项是正确的?(2010年试卷二第12题)
柱下桩基承台的弯矩计算公式Mx=∑Niyi中,当考虑承台效应时,Ni不包括下列( )引起的竖向力。
原材料的质量检验要求把住三关,说法不正确的是()。
国际能源机构认为,全世界已知的“能回收”煤的储藏量大约是万亿吨,地下煤气化很可能把“可回收”的煤的储藏量增加到大约6万亿吨。把它们全部燃烧完全会使从化石燃料中排人大气层的二氧化碳总量增加到目前的20倍,对气候的影响将比科学家预计的最糟糕的情况还要糟糕。上文
汽车:导航仪
刘备初见庞统,见此人相貌不扬,便心生“此人并无过人之才”之意,望其态度诚恳,让其去担任一县令。此事蕴含了:
"Ah,yes,divorce",RobinWilliamsoncemused,"fromtheLatinwordmeaningtoripoutaman’sgenitalsthroughhiswallet".The
最新回复
(
0
)