首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是r(B)=n.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是r(B)=n.
admin
2021-07-27
67
问题
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵.证明:B
T
AB为正定矩阵的充分必要条件是r(B)=n.
选项
答案
显然B
T
AB为对称矩阵.则B
T
AB为正定矩阵→x≠0,x
T
(B
T
AB)x>0→(Bx)
T
A(Bx)>0→Bx≠0→r(B)=n.
解析
转载请注明原文地址:https://kaotiyun.com/show/UQy4777K
0
考研数学二
相关试题推荐
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解.
设A为n阶可逆矩阵,A是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
A是4阶实对称矩阵,A2+2A=0,r(A)=3,则A相似于().
设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1—λ1)β1+…+(ks一λs)βs=0,则
已知向量组(I)α1,α2,α3,α4线性无关,则与(I)等价的向量组是()
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α3线
试用配方法化二次型f(x1,x2,x3)=2x12+3x22+x32+4x1x2—4x1x3—8x2x3为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
随机试题
在下列Excel2010公式中,计算结果为文本型的是________。
13%的低税率适用于纳税人销售或者进口的货物有( )。
下列关于金融衍生工具概念的说法中,正确的有()。
甲公司将无法查明的现金短缺500元计入营业外支出。()
在MMPI—2中,TRIN低分表明被试者不加区别地对测验项目给予()。
简述中学德育的途径。
李强口头约定以每年6万元的租金将自己所有的房屋出租给吴恒使用,期限至吴恒去世为止。房屋出租两年后,吴恒经李强同意,对该房屋进行了装修,共花费5万元。某天晚上该房屋的窗户玻璃被人砸碎,未抓获肇事者。李强拒绝维修,吴恒就自行维修并花费5000元。现李强和吴恒发
很多家长认为,孩子不听话,“打屁屁”惩罚一下,至少能让孩子注意到自己的行为不当,变得更听话一些。还有一些人坚持“不严加管教会惯坏孩子”的传统信念,认为“打屁屁”是为孩子好。研究者对16万名儿童在过去5年里的经历进行研究,通过收集“打屁屁”行为的元数据加以分
关于哈夫曼树,下列说法正确的是()。
若函数f(x)在x=1处的导数存在,则极限=_______.
最新回复
(
0
)