首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
admin
2017-12-29
63
问题
设n阶矩阵A的伴随矩阵A
*
≠0,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
选项
A、不存在
B、仅含一个非零解向量
C、含有两个线性无关的解向量
D、含有三个线性无关的解向量
答案
B
解析
由A
*
≠O可知,A
*
中至少有一个非零元素,由伴随矩阵的定义可得矩阵A中至少有一个n一1阶子式不为零,再由矩阵秩的定义有r(A)≥n一1。又因Ax=b有互不相等的解知,即其解存在且不唯一,故有r(A)<n,从而r(A)=n一1。因此对应的齐次线性方程组的基础解系仅含一个非零解向量,故选B。
转载请注明原文地址:https://kaotiyun.com/show/UUX4777K
0
考研数学三
相关试题推荐
设矩阵有三个线性无关特征向量,λ=2是A的二重特征值,试求可逆阵P,使得P-1AP=A,A是对角阵.
设P(A)>0,P(B)>0.证明:A,B互不相容与A,B相互独立不能同时成立.
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求需求量等于供给量时的均衡价格pe;
已知y—y(x)是微分方程(x2+y2)dy一dy的任意解,并在y=y(x)的定义域内取x0,记y0一y(x0)。证明:均存在.
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:若x1,x2,…xn∈(a,b),且xi<xi+1(i=1,2,…,n一1),则其中常数ki>0(i=1,2,…,n)且
设a为正常数,则级数的敛散性为________.
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数a的值;
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解.
随机试题
在竞争优势分析的基本价值链模型中,下列属于基本活动的是()
心理生理性失眠睡眠调节性障碍
小儿虫积,腹痛时作,面黄体瘦,肚腹胀满,发热口臭,大便失常者,治疗宜用()
2004年2月9日,原告李某酒后来到县城浴室洗澡。洗完后,李某躺在二号池的搁板上睡觉,被浴室工作人员发现并制止。李某在爬起时,脚下一滑,从搁板上掉落二号池内,当即被人拉出。因二号池水温在80℃以上,李某被烫伤。李某受伤后,浴室方面拒绝送其到医院治疗。他为节
以下哪种行为属于自力救济的范畴?
在工程地质勘察中,直接观察地层结构变化的方法是:
设备监理工程师进行合同管理的对象为()。
记账人员根据记账凭证记账后,在“记账符号”栏内作“√”记号,表示该笔金额已记入有关账户,以免漏记或重记。()
下列选项中,不属于会计等式的是()。
下列关于铅的说法错误的是()。
最新回复
(
0
)