首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
admin
2017-12-29
38
问题
设n阶矩阵A的伴随矩阵A
*
≠0,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
选项
A、不存在
B、仅含一个非零解向量
C、含有两个线性无关的解向量
D、含有三个线性无关的解向量
答案
B
解析
由A
*
≠O可知,A
*
中至少有一个非零元素,由伴随矩阵的定义可得矩阵A中至少有一个n一1阶子式不为零,再由矩阵秩的定义有r(A)≥n一1。又因Ax=b有互不相等的解知,即其解存在且不唯一,故有r(A)<n,从而r(A)=n一1。因此对应的齐次线性方程组的基础解系仅含一个非零解向量,故选B。
转载请注明原文地址:https://kaotiyun.com/show/UUX4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1,证明:存在x1∈[0,1]使得|f(x1)|>4;
求函数y=excosx的极值.
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:r(B)≥r+m一s.
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求价格函数p(t);
微分方程y"一7y’=(x一1)2由待定系数法确定的特解形式(系数的值不必求出)是________.
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:若x0∈(a,b),则对于(a,b)内的任何x,有f(x0)≥f(x)-f’(x0)(x-x0),当且仅当x=x0时等号成立;
设二次型f(x1,x2,x3)=XTAX=ax12+222一223+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵。
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
随机试题
设甲国为《伯尔尼公约》的成员国,乙国为非成员国。依该公约的规定,下列哪些作品可以享有国民待遇?()
代赭石的功效有
哪项疾病是导致婴儿期心力衰竭的最主要疾病
硬质树脂全冠修复体龈边缘应
容器中储有氢气,温度为27℃,压强p=1×105Pa,单位体积中的分子数为( )。
由于境外旅游者的人生观、价值观和政治观点的不同,他们对我国的某些方针政策不理解,存在不同的看法,甚至分歧。对此,导游人员在回答他们提出这方面的问题时,应在阐明我们的立场和观点时()。
()型的课堂气氛最有助于知识的学习。
在下列各纸型中,目前国内各机关公文用纸一般推荐采用()。
下面不属于需求分析阶段工作的是()。
A、Theprisongatesalwaysopen.B、Itsprisonercanworkoutside.C、Theprisonhasnoarmedguards.D、Theprisonisopentothep
最新回复
(
0
)