首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且
admin
2016-01-15
74
问题
设y=f(x)是区间[0,1]上的任一非负连续函数.
(1)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积.
(2)又设f(x)在区间(0,1)内可导,且f’(x)>
,证明(1)中的x
0
是唯一的.
选项
答案
(1)本题可转化为证明x
0
f(x
0
)=[*]f(x)dx.令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 [*] F’(x)=xf’(x)*f(x)+f(x)=2f(x)+xf’(x)>0. 即F(x)在(0,1)内是严格单调递增的,从而F(x)=0的点x=x
0
一定唯一,因此(1)中的点是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/UXw4777K
0
考研数学一
相关试题推荐
设n阶矩阵A≠0,存在某正整数m,使Am=O,证明:A必不相似于对角矩阵.
设函数f(x)在区间[0,1]上连续,且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
已知(1,-1,1,-1)T是线性方程组的一个解,试求(1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(2)该方程组满足x2=x3的全部分.
设z=f[z-y+g(χ-y-z)],其中f,g可微,求.
一长方形的两边长分别以x与y表示,若x边以0.O1m/s的速度减少,y边以0.02m/s的速度增加,求在x=20m,y=15m时,长方形面积的变化速度及对角线长度的变化速度.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
设f(x)在区间[0,1]上连续,证明:∫01f(x)dx∫x1f(y)dy=[∫01f(x)dx]2.
求下列曲面的方程:以为准线,顶点在原点的锥面方程.
随机试题
“十八大”提出的党建目标是把党建设成()
粗肌丝是骨骼肌细胞肌浆(细胞质)中肌原纤维的组成部分之一,主要由()构成。
地方政府规章一般可以以()为名称。
一般而言,下列债券按其信用风险依次从低到高排列的是()。
下列各项中,应当缴纳土地增值税的有()。
母公司价值创造的几种类型有()。
第二次国共合作得以长期维持的主要经验是()。
异姓养子在财产方面与亲于享有同等继承权,始于()。
打开考生文件夹下的演示文稿yswg.pptx,按照下列要求完成对此文稿的修饰并保存。在第一张幻灯片之后插入版式为“标题幻灯片”的新幻灯片,主标题输入“故宫博物院”,字号设置为53磅、红色(RGB模式:红色255,绿色1,蓝色2)。副标题输入“世界上现存
Whatisthecompanygoingtodo?
最新回复
(
0
)