首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且
admin
2016-01-15
73
问题
设y=f(x)是区间[0,1]上的任一非负连续函数.
(1)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积.
(2)又设f(x)在区间(0,1)内可导,且f’(x)>
,证明(1)中的x
0
是唯一的.
选项
答案
(1)本题可转化为证明x
0
f(x
0
)=[*]f(x)dx.令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 [*] F’(x)=xf’(x)*f(x)+f(x)=2f(x)+xf’(x)>0. 即F(x)在(0,1)内是严格单调递增的,从而F(x)=0的点x=x
0
一定唯一,因此(1)中的点是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/UXw4777K
0
考研数学一
相关试题推荐
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证:(1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;(2)存在η∈(a,b),使ηf(η)+f’(η)=0.
计算二重积分,其中D是第一象限中由直线y=x和曲线y=x3所围成的封闭区域.
设函数f(x)在区间[0,1]上连续,且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴旋转一周而得的旋转体的体积V(a);
累次积分等于()。
求由球面x2+y2+z2=1,x2+y2+z2=4z及锥面z=的上半部分所围的均质物体对位于坐标原点处的质量为m的质点的引力,设其密度μ为常数.
求二分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的重心,设曲线的线密度ρ=1.
已知△ABC的顶点坐标为A(1,2,1),B(1,0,1),C(0,1,z),则当z=___________时,△ABC的面积最小.
随机试题
有较明显腹胀的患者不宜进食
患儿,男性,13岁。半月来全身水肿、乏力。查体:尿蛋白(++++),定量4.0g/d。镜检偶见沉渣红细胞和透明管型。血压120/80mmHg,血浆白蛋白29g/L,BUN5mmol/L,血肌酐98μmol/L,胆固醇、甘油三酯升高。该患儿用泼尼松50
中国历史上第一部比较系统的封建成文法典是()。
我国对外贸易税收的主要表现形式是()。
甲公司属于建筑防水材料行业,是一家集研发、生产、销售、技术咨询和施工服务为一体的专业化建筑防水系统供应商。建筑防水材料是建筑功能材料的重要组成部分,随着国家基础设施建设力度的加大和城镇化速度的加快,其应用领域和市场容量将持续扩大。产业政策方面,国家将逐步完
“劳心者治人,劳力者治于人”的中国传统儒家思想把()相隔离。
一个数列为1,-1,2,-2,-1,1,-2,2,1,-1,2,-2,……则该数列第2009项为()。
一些投机者是乘船游玩的热心人。所有的商人都支持沿海工业的发展。所有热心乘船游玩的人都反对沿海工业的发展。据此可知()。
Completethetablebelow.WriteNOMORETHANTWOWORDSAND/ORANUMBERforeachanswer.Talkingaboutthehistoryofbikes
Manystudentstodaydisplayadisturbingwillingnesstochooseacademicinstitutions,fieldsofstudyandcareersinthebasis
最新回复
(
0
)