首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且
admin
2016-01-15
56
问题
设y=f(x)是区间[0,1]上的任一非负连续函数.
(1)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积.
(2)又设f(x)在区间(0,1)内可导,且f’(x)>
,证明(1)中的x
0
是唯一的.
选项
答案
(1)本题可转化为证明x
0
f(x
0
)=[*]f(x)dx.令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 [*] F’(x)=xf’(x)*f(x)+f(x)=2f(x)+xf’(x)>0. 即F(x)在(0,1)内是严格单调递增的,从而F(x)=0的点x=x
0
一定唯一,因此(1)中的点是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/UXw4777K
0
考研数学一
相关试题推荐
求不定积分.
设函数f(x)在区间[0,1]上连续,且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
判断下列结论是否正确?为什么?(Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0);(Ⅱ)若x∈(x0-δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同的可导性;(Ⅲ
设z=f[z-y+g(χ-y-z)],其中f,g可微,求.
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点。
计算二重积分.
过第一象限中椭圆上的点(ε,η)作该椭圆的切线,使该切线与两坐标轴的正向围成的三角形的面积为最小,求点(ε,η)的坐标及该三角形的面积.
计算曲面积分,其中∑是面x2+y2+z2=1的外侧.
求下列曲面的方程:以为准线,顶点在原点的锥面方程.
随机试题
中国魏晋时期的______哲学流派对这个时期的诗歌、书法作品创作中深层的意蕴具有重要影响。()
A.含挥发油,油中主成分为桂皮酸B.含挥发油,油中主成分是α、β-桉油醇C.七叶树素、七叶树苷D.东莨菪碱、莨菪碱E.黄酮类化合物、绿原酸、异绿原酸
A.对工作极端负责,对技术精益求精B.树立正确的经营道德观C.为病患者提供质量保证的药品和安全、有效、经济、合理的药学服务D.互相关心,维护集体荣誉E.开展用药调查及药品利用评价药品流通领域的道德责任之一是()
案情:2009年1月,甲、乙、丙、丁、戊共同投资设立鑫荣新材料有限公司(以下简称鑫荣公司),从事保温隔热高新建材的研发与生产。该公司注册资本2000万元,各股东认缴的出资比例分别为44%、32%、13%、6%、5%。其中,丙将其对大都房地产开发有限公司所持
美国对失职或在执业中出现问题的房地产经纪人采取的主要措施有()。
当量子能量达到()eV以上时,对物体有电离作用,能导致机体的严重损伤,这类辐射称为电离辐射。
下列选项中,不属于全国人大常委会的预算管理职权的是()。
2019年2月,农业农村部等七部门联合印发《国家质量兴农战略规划(2018—2022年)》。下列关于实施质量兴农战略的说法,正确的是:
“杵臼之交”多用来指不计身份而结交的朋友。这里的“杵臼”在古代是用来做什么的?()
PeoplewhogrewupinAmericaandWesternEuropehavebecomeusedtotheideathattheWestdominatestheworldeconomy.Infact
最新回复
(
0
)