首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2021-11-09
71
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
η
0
=0, 若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关, 所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/PSy4777K
0
考研数学二
相关试题推荐
证明:当χ>1时,
曲线L:(a>0)在t=对应点处的曲率为_______.
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为().
已知函数y=e2x+(x+1)ex是二阶常系数非齐次线性微分方程y"+ayˊ+by=Cex的一个特解,则该方程的通解是().
当x≥0时,函数f(x)可导,有非负的反函数g(x),且恒等式成立,则函数f(x)=().
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a﹤b=f(b).证明:存在εi∈(a,b)(i=1,2,...,n),使得.
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0﹤θ﹤1).证明:.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解。
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解。
向量组α1,α2,…,αm线性相关的充分条件是
随机试题
“理想信念”是由理想和信念两个概念结合而成,包含了理想和信念各自的含义。其中,理想是
脾气虚损病机,主要是指
关于rS型右心室肥大心电图特征的表述,不正确的是
肺痨以咳血为主症时,应首选下列何方
水电工程已按批准的设计文件全部建成,并经过()的运行考验后,应进行工程竣工验收。
每天淹没在他人的信息里,你的心情会变得更好还是更糟?秀甜蜜恩爱、炫手表包包、晒美景美食、转心灵鸡汤……似乎每一个人的朋友圈里总有这样一批对社交工具乐此不疲的活跃分子。每天淹没在他人的信息里,你的心情会变得更好或者更糟吗?如果你已经隐隐感到整天看到你的好友经
银:暗淡
Ямогуприйтиквамв____день,ясейчасвотпуске.
Whatdoesthemanwantthewomantodo?
Youmightthinkyoulefttheworldofcliques(小团体)andin-crowdsbehindwhenyoulefthighschool.You’dbewrong.Thebenefi
最新回复
(
0
)