首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1=1,an+1+=0,证明:数列{an}收敛,并求
设a1=1,an+1+=0,证明:数列{an}收敛,并求
admin
2020-03-16
61
问题
设a
1
=1,a
n+1
+
=0,证明:数列{a
n
}收敛,并求
选项
答案
先证明{a
n
}单调减少.a
2
=0,a
2
<a
1
; 设a
k+1
<a
k
,a
k+2
=[*],由a
k+1
<a
k
得1-a
k+1
>1-a
k
,从而[*],即a
k+2
<a
k+1
,由归纳法得数列{a
n
}单调减少. 现证明a
n
≥[*]a
1
=1≥[*],设a
k
≥[*],则1-a
k
≤1+[*],从而[*],即a
k+1
≥[*],由归纳法,对一切n,有a
n
≥[*] 由极限存在准则,数列{a
n
}收敛,设[*]=A,对a
n+1
+[*]=0两边求极限得 A+[*]=0,解得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ub84777K
0
考研数学二
相关试题推荐
求∫xsin2xdx.
把y看作自变量,χ为因变量,变换方程=χ.
求函数y=(x∈(0.+∞))的单调区间与极值点,凹凸区间与拐点及渐近线.
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记求二元函数f(x,y)=(x2+y2≠0)的最大值,并求最大值点.
[2018年]已知a是常数,A=可经初等列变换化为矩阵B=求满足AP=B的可逆矩阵P.
[2005年]确定常数a,使向量组α1=[1,1,a]T,α2=[1,a,1]T,α3=[a,1,1]T可由向量组β1=[1,1,a]T,β2=[一2,a,4]T,β3=[一2,a,a]T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x,y0)=f(x0,y0),f(x0,y)
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0,证明:存在ξ∈(a,b),使
随机试题
关于慢性肾炎的临床表现下列哪项是错误的
重整医嘱时,错误的是( )。
某年1月,甲市北方文化艺术中心与乙市江南音像出版公司在丙市签订合同,双方商定合作以歌颂残疾人自强不息为主题的60分钟歌曲录音磁带一盘,由北方文化艺术中心收集曲目,进行必要的艺术处理,并解决有关版权问题,由江南音像出版公司制作发行。后北方文化艺术中心收集歌曲
【背景资料】某汽车生产线设备安装工程,施工总承包方项目经理部的项目经理负责编制了工程施工组织总设计,编制过程中是以分部工程项目为对象进行编制的。编制完成后提交监理工程师。该设备基础工程施工完成后,施工总承包方对设备基础进行了检验,其主要
为有发展前途的中层管理人员提供的,培养分析全公司范围问题的能力,提高决策能力的培训方法是()
民主革命时期,毛泽东同志在与党内的主观主义、教条主义作斗争的过程中,提出并科学地阐述了实事求是的思想路线。他说:“‘实事’就是客观存在着的一切事物,‘是’就是客观事物的内部联系,即规律性,‘求’就是我们去研究。”实事求是,要求我们研究和把握事物的内在本质及
2009年罗马游泳世锦赛尘埃落定,高科技泳衣成为了本届世锦赛的焦点话题,以至于比赛本身反而被忽略了。可实际上,泳衣问题并不是2009年才出现的,只不过Speedo的垄断格局被颠覆,或者说聚亚氨酯材料被竞争对手Jaked01和ArenaX-Glide引进,
某甲因盗窃罪被判处有期徒刑3年,缓期执行,考验期限为5年。缓刑考验期的第4年,某甲又犯交通肇事罪,但未被发现,缓刑考验期满后第2年才被发现。对其应如何处理:()。
Likeotherformsoflifeonthisplanet,humanbeingsconfrontabasictask:todealsatisfactorilywiththeirconflictsandthe
AskingQuestionsEffectivelyI.ReasonAskingtherightquestionshelpsimprovecommunicationskills:—collectingbetter【T1】__
最新回复
(
0
)