首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1=(1,1,1,1),α2=(2,3,4,4),α3=(3,2,1,k)所生成的向量空间的维数是2,则k=_____________________.
已知向量组α1=(1,1,1,1),α2=(2,3,4,4),α3=(3,2,1,k)所生成的向量空间的维数是2,则k=_____________________.
admin
2021-02-25
73
问题
已知向量组α
1
=(1,1,1,1),α
2
=(2,3,4,4),α
3
=(3,2,1,k)所生成的向量空间的维数是2,则k=_____________________.
选项
答案
1
解析
本题考查向量空间基的概念.要求考生掌握向量空间基的定义;向量组与其所生成向量空间的向量组等价,向量空间的维数就是该向量组的秩.
由于向量组α
1
,α
2
,α
3
所生成的向量空间的维数为2,可知向量组的秩r(α
1
,α
2
,α
3
)=2,于是
由于向量组的秩r(α
1
,α
2
,α
3
)=2,所以k=1.
转载请注明原文地址:https://kaotiyun.com/show/Ui84777K
0
考研数学二
相关试题推荐
对行满秩矩阵Am×n,必有列满秩矩阵Bn×m,使AB=E.
设四阶矩阵B满足,求矩阵B.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值;
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
设λ为可逆方阵A的特征值,且χ为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且χ为对应的特征向量;(3)为A*的特征值,且χ为对应的特征向量.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
随机试题
美国公共政策研究学者埃齐奥尼提出的政策模型是()
A.亲和层析B.SDS-PAGEC.等电点沉淀法D.离子交换层析纯化酶和受体蛋白效率最高的方法是
能补肾益精,安胎的药物是()
下列哪种物质的肾清除率能准确代表肾小球滤过率
浅Ⅱ度烧伤,烧伤深度可达
新鲜脑脊液混浊,最常见的原因是含大量
溶血反应者可见()
关于水稻,下列说法正确的是:
Theworldisgoingthroughthebiggestwaveofmergersandacquisitionsneverwitnessed.TheprocesssweepsfromhyperactiveAme
WewelcomeyouaboardtheEasternFlightandwilldoourbesttomakeyourtripcomfortableandenjoyable.Foryoursafetyand
最新回复
(
0
)