首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0.g’(x)<0,试证明存在∈∈(a,b)使
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0.g’(x)<0,试证明存在∈∈(a,b)使
admin
2017-02-28
42
问题
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0.g’(x)<0,试证明存在∈∈(a,b)使
选项
答案
令φ(x)=f(x)∫
x
b
g(t)dt+g(x)∫
a
x
f(t)dt,显然函数φ(x)在区间[a,b]上连续,函数φ(x)在区间(a,b)内可导,且 φ’(x)=[f’(x)∫
x
b
g(f)dt一f(x)g(x)]+[g(x)f(x)+g’(x)∫
a
x
f(f)dt] =f’(x)∫
x
b
g(t)dt+g’(T)∫
a
x
f(t)dt 另外,又有φ(a)=φ(b)=0. 所以根据罗尔定理可知存在ξ∈(a,b)使φ’(ξ)=0,即 f’(ξ)∫
ξ
b
g(f)dt+g’(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g’(x)<0,所以区间(a,b)内必有g(x)>0,从而就有∫
x
b
g(t)dt>0,于是有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Uku4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
A、 B、 C、 D、 B
用区间表示下列点集,并在数轴上表示出来:(1)I1={x||x+3|<2}(2)I2={x|1<|x-2|<3}(3)I3={x||x-2|<|x+3|}
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设总体X的概率密度为f(x)=1/2e-丨x丨(-∞
设随机变量X和Y的方差存在且不等于0,则D(X+Y):DX+DY是X和Y
(I)先写出在变力F的作用下质点由原点沿直线运动到点M(ξ,η,ζ)时所作[*]
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
随机试题
A.旦慧、昼安、夕加、夜甚B.春善病鼽衄C.平旦人气生,日中而阳气隆D.东南湿热,西北燥寒昼夜晨昏对人体生理的影响可反映为
干式报警阀组的组件中,()是核心组件。
电站锅炉辅助设备是指()。
个人贷款催收流程的步骤,不包括()。
权益法核算下,长期股权投资的初始投资成本大于投资时应享有被投资单位可辨认净资产公允价值份额的,不调整长期股权投资的初始投资成本。()
1.2015年年底至2016年4月期间,刚刚搬到新校址的某外国语学校部分学生不断出现各种不良反应和疾病。学生家长调查发现,学校北面有一片工地,原本有三家化工厂,化工厂生产的大量氯苯、环芳烃、汞、镉等污染物严重超标,导致所在地块成为“毒地”。近年来,随着社会
对于经典ARM程序状态寄存器CPSR,以下说法错误的是()。
有如下类定义:classPoint{public:voidSetX(intxx){x=xx;}voidSetY(intyy){y=yy;}
Theinterview—about2minutesInthisparttheinterlocutorasksquestionstoeachofthecandidatesinturn.Youhavetogivei
Societyisaddictedtobeauty.Whereveryoulookthereareimagesofslimmodelswithtonedbodiesandsmoothskin.Theirwealth
最新回复
(
0
)