首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
用正交变换法化二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3-4x2x3为标准二次型.
用正交变换法化二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3-4x2x3为标准二次型.
admin
2017-12-31
80
问题
用正交变换法化二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
-4x
1
x
2
-4x
1
x
3
-4x
2
x
3
为标准二次型.
选项
答案
f(x
1
,x
2
,x
3
)=X
T
AN,其中[*] [*]=(λ+3)(λ-3)
2
=0得λ
1
=-3,λ
2
=λ
3
=3. 由(-3E-A)X=0得λ
1
=-3对应的线性无关的特征向量为[*]; 由(3E-A)X=0得λ
2
=λ
3
=3对应的线性无关的特征向量为[*] [*] 则f(x
1
,x
2
,x
3
)=X
T
AX[*]Y
T
(Q
T
AQ)Y=-3Y
1
2
+3y
2
2
+3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/HHX4777K
0
考研数学三
相关试题推荐
设随机变量X服从正态分布,其概率密度为f(x)=ke-x2+2x-1(一∞<x<+∞),则常数k=________.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由.
设有矩阵Am×n,Bn×m,Em+AB可逆.验证:En+BA也可逆,且(En+BA)-1=En—B(Em+AB)-1A;
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
已知3阶矩阵A有特征值λ1=1,λ2=2,λ3=3,则2A*的特征值是()
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是()
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数a的值;
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=二次型g(x)=XTAX与f(X)的规范形是否相同?说明理由。
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
随机试题
评述王安石变法。(南京大学2001年中国古代史真题;北京师范大学2004年历史学综合真题;陕西师范大学2005年中国古代史真题)
下列关于BIOS的叙述,错误的是()。
女性,74岁,两年前诊断肺心病,一周来咳嗽、咳痰、喘息加重,双下肢水肿,体检:肺内大量湿啰音,心率100次/分,肝肋下2.5cm,双下肢水肿。白细胞计数及中性粒细胞分类均增高,血气分析:pH7.335,PaO250mmHg,PaCO278mmHg,HCO
使用麦角新碱时,应注意的事项是:
Graves病良性突眼的原因主要是
A、赤芍B、生地黄C、玄参D、穿心莲E、红藤既能活血止痛,又能清热凉血的药物是()
高尚的学习动机的核心是利他主义。()
下列哪一情形属于国家赔偿的范围?()
马丁.路德(南京大学2001年综合卷真题)
在软件设计中不使用的工具是
最新回复
(
0
)