首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
用正交变换法化二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3-4x2x3为标准二次型.
用正交变换法化二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3-4x2x3为标准二次型.
admin
2017-12-31
85
问题
用正交变换法化二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
-4x
1
x
2
-4x
1
x
3
-4x
2
x
3
为标准二次型.
选项
答案
f(x
1
,x
2
,x
3
)=X
T
AN,其中[*] [*]=(λ+3)(λ-3)
2
=0得λ
1
=-3,λ
2
=λ
3
=3. 由(-3E-A)X=0得λ
1
=-3对应的线性无关的特征向量为[*]; 由(3E-A)X=0得λ
2
=λ
3
=3对应的线性无关的特征向量为[*] [*] 则f(x
1
,x
2
,x
3
)=X
T
AX[*]Y
T
(Q
T
AQ)Y=-3Y
1
2
+3y
2
2
+3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/HHX4777K
0
考研数学三
相关试题推荐
已知y—y(x)是微分方程(x2+y2)dy一dy的任意解,并在y=y(x)的定义域内取x0,记y0一y(x0)。证明:均存在.
假设有四张同样卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有a1,a2,a3,现在随意抽取一张卡片,令Ak={卡片上印有ak)。证明:事件A1,A2,A3两两独立但不相互独立.
设随机变量X服从正态分布,其概率密度为f(x)=ke-x2+2x-1(一∞<x<+∞),则常数k=________.
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f’(x)]都存在,且f-1[f-1(x)]≠0.证明:
设向量组α1=[a11…a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,…ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设矩阵A,B满足A*BA=2B4—8E,其中,E为单位矩阵,A*为A的伴随矩阵,则B=_______.
设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记,则A=【】
随机试题
Anyacademicbreakthrough,brilliantasitmaybe,doesnotautomaticallyensurethatitcanbeappliedtopractice.
胎儿能否顺利通过产道的决定因素是
效度是指
护士对肺炎患儿采取的护理措施不正确的是
一个判决只对被判处的案件有效,法院判决对日后同类案件并无约束力的法律体系是()。
金融期货合约是由交易双方订立的、约定在未来某日按成交时所约定的价格交割一定数量的金融商品的标准化契约。()
在财务和经营决策中,与他方之间存在直接或间接控制关系或重大影响关系的企事业法人是()。
某二叉树共有150个结点,其中有50个度为1的结点,则()。
他刚出生就了。
ThereisanoldsayinginEnglish:"Laughteristhebestmedicine".Untilrecently,fewpeopletookthesayingveryseriously.N
最新回复
(
0
)