首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中 (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1; (Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
设n元线性方程组Ax=b,其中 (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1; (Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
admin
2019-08-01
54
问题
设n元线性方程组Ax=b,其中
(Ⅰ)证明行列式|A|=(n+1)a
n
;
(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x
1
;
(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
选项
答案
(Ⅰ)记D
n
=|A|,以下用数学归纳法证明D
n
=(n+1)a
n
.当n=1时,D
1
=2a,结论成立;当n=2时, D
2
=[*]=3a
2
=(n+1)a
n
结论成立;假设结论对于小于n的情况成立.将D
n
按第1行展开,得 D
n
= 2aD
n一1
一[*] =2aD
n一1
一a
2
D
n一2
(代入归纳假设D
k
=(k+1)a
k
,k<n) = 2ana
n一1
一a
2
(n一1)a
n一2
=(n+1)a
n
故|A|=(n+1)a
n
. (Ⅲ)当a=0时,方程组为 [*] 此时方程组系数矩阵的秩和增广矩阵的秩均为n一1,所以此时方程组有无穷多解,其通解为 x=(0,1,0,…,0)
T
+k(1,0,0,…,0)
T
其中k为任意常数.
解析
本题综合考查高阶行列式的计算、线性方程组解的判定及其求解方法.注意当a=0时,方程组为:x
2
=1,x
3
=0,…,x
n
=0,由于系数矩阵右上角的n一1阶子式非零,故选取x
2
,…,x
n
为约束未知量,而x
1
为自由未知量,令x
1
=0,便得Ax=b的一个特解为η=(0,1,0,…,0)
T
,在对应齐次方程组Ax=0中,令自由未知量x
1
=1,便得Ax=0的基础解系为ξ=(1,0,0,…,0)
T
,于是由解的结构定理便得Ax=b的通解为x=η+kξ.
转载请注明原文地址:https://kaotiyun.com/show/JJN4777K
0
考研数学二
相关试题推荐
求由方程x2+y2-xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
设函数f(x)在(-∞,+∞)内连续,其导数的图形如右图,则f(x)有().
∫-22(x2+3x+4)
设a为常数,求
求I=,其中D为y=,y=x及x=0所围成区域.
将f(x,y)dxdy化为累次积分,其中D为x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
假定所涉及的反常积分(广义积分)收敛,证明:∫-∞+∞=∫-∞+∞f(x)dx.(*)
已知A=,a是一个实数.(1)求作可逆矩阵U,使得U-1AU是对角矩阵.(2)计算|A-E|.
(1997年试题,一)已知在x=0处连续,则a=_________.
[2006年]设函数y=f(x)具有二阶导数,且f′(x)>0,f″(x)>0,Δx为自变量x在点x0处的增量,Δy与dy分别为f(x)在点x0处对应的增量与微分,若Δx>0,则().
随机试题
处方直接写药名,需调配砂炒品的是
A、辛B、苦C、酸D、咸E、甘能安蛔生津的味是()。
距某一线声源r处的声级为50DB,2r处的声级为47DB,在r至2r距离范围内该线声源可视作()。
企业价值最大化的目标具有的优点有( )。
申请专利的发明创造在申请日以其6个月内,下列各项中,不丧失新颖性的有()。
长江公司系甲公司的母公司,2014年6月30日,长江公司向甲公司销售一件产品,销售价格为900万元,增值税税额为153万元,实际成本为800万元,相关款项已收存银行。甲公司将购入的该产品确认为管理用固定资产(增值税进项税额可抵扣)当日投入使用,预计使用寿命
“大学之教也,时教必有正业,退息必有居学。”这句话出自()。
一个教师通过打手心的方式使一个学生不再撒谎,同时也变得沉默寡言起来,这说明教育()。
如下链式存储结构对应的广义表的长度和深度分别为______。
Itmaybetoocoldtoventureoutside,butthatdoesn’tmeanyouneedtoputyourjob-huntingplansonice.Youcan【B1】______ne
最新回复
(
0
)