首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2线性无关,α1,α2,β1线性相关,又非零向量β2与α1,α2正交,则下列结论正确的是( ).
设向量组α1,α2线性无关,α1,α2,β1线性相关,又非零向量β2与α1,α2正交,则下列结论正确的是( ).
admin
2021-03-10
88
问题
设向量组α
1
,α
2
线性无关,α
1
,α
2
,β
1
线性相关,又非零向量β
2
与α
1
,α
2
正交,则下列结论正确的是( ).
选项
A、向量组α
1
,α
2
,β
2
线性相关
B、向量组α
1
,α
2
,β
1
+kβ
2
线性无关
C、向量组α
1
,α
2
,β
1
+kβ
2
线性相关
D、向量组α
1
,α
2
,β
1
-β
2
线性无关
答案
D
解析
由α
1
,α
2
线性无关,且α
1
,α
2
,β
1
线性相关得β
1
可由向量组α
1
,α
1
线性表示;
令k
1
α
1
+k
2
α
2
+k
3
β
2
=0,
由(β
2
,k
1
α
1
+k
2
α
2
+k
3
β
2
)=0且β
2
与α
1
,α
2
正交得k
3
(β
2
,β
2
)=0,
再由β
2
≠0得(β
2
,β
2
)>0,从而k
3
=0,
于是k
1
α
1
+k
2
α
2
=0,再由α
1
,α
2
线性无关得是k
1
=k
2
=0,
即α
1
,α
2
,β
2
线性无关,故β
1
-β
2
不可由α
1
,α
2
线性表示。即α
1
,α
2
,β
1
-β
2
线性无关,应选D.
转载请注明原文地址:https://kaotiyun.com/show/V784777K
0
考研数学二
相关试题推荐
(2009年)设y=y(χ)在区间(-π,π)内过点()的光滑曲线.当-π<χ<0时,曲线上任一点处的法线都过原点;当0≤χ<π时,函数y(χ)满足y〞+y+χ=0.求函数y(χ)的表达式.
(2003年试题,八)设位于第一象限的曲线y=f(x)过点其上任一点P(x,y)处的法线与),轴的交点为Q,且线段PQ被x轴平分.求曲线y=f(x)的方程;
已知曲线L的方程(t≥0)。讨论L的凹凸性;
已知α1,α2为2维列向量,矩阵A=(2α1+α2,α1-α2),B=(α1,α2).若|A|=6,|B|=_______.
设f(x)连续,f(0)=1,则曲线y=∫0xf(x)dx在(0,0)处的切线方程是_________.
交换二次积分次序:∫01dyf(x,y)dx=____________。
曲线,直线x=2及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为______。
微分方程xyˊ+2y=xlnx满足y(1)=-1/9的解为________.
A、 B、 C、 D、 B此题若立刻作变换tanx=t或则在0≤x≤2π上不能确定出单值连续的反函数x=φ(t).可先利用周期性和奇偶性将积分区间缩小,在此小区间上作变换tanx=t.
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
随机试题
2018年2月12日,我国在西昌卫星发射中心用长征三号乙运载火箭(即远征一号上面级),以“一箭双星”方式发射第二十八颗、第二十九颗()。
为了增大热阻,决定在图1—1所示构造中贴两层铝箔,下列哪种方案最有效?
生产经营单位发生较大生产安全事故后,除应向当地县以上人民政府安全生产监督管理部门报告外,还应向()报告。
背景我国西南某新建机场为高填方机场,其中航站区坐落在土质混合料的填方区,面积约为30000m2。施工过程中发生了以下事件:事件一:为强化施工质量管理,在强夯压实土石方时,使用自动监测装置,对其施工过程进行了实时监控。事件二:在冬季低温施工时,发现填料
下列各项属于流动负债的是()。
对于¥107,000.53,下列中文大写中正确的是( )。
被誉为“吴山第一点”的是()。
孔子说:“君子矜而不争,群而不党。”请在深刻理解这句话的基础上,写一篇文章,除诗歌外,文体不限。
试述教学过程的基本规律。
Whatdoesthepassagesayaboutthesecondhandsmoke?
最新回复
(
0
)