首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征方程有一个二重根,求a的值。并讨论A是否可相似对角化。
设矩阵A=的特征方程有一个二重根,求a的值。并讨论A是否可相似对角化。
admin
2019-08-01
36
问题
设矩阵A=
的特征方程有一个二重根,求a的值。并讨论A是否可相似对角化。
选项
答案
A的特征多项式为 [*] 若λ=2是特征方程的二重根时,有2
2
一16+18+3a=0,解得a=一2。 当a=一2时,A的特征值为2,2,6,矩阵2E一A=[*]的秩为1,故λ=2对应的线性无关的特征向量有两个,因此A可相似对角化。 若λ=2不是特征方程的二重根,则λ
2
一8λ+18+3a为完全平方式,从而18+3a=16,解得 a=[*]。 当a=[*]时,A的特征值为2,4,4,矩阵4E—A=[*]秩为2,故λ=4对应的线性无关的特征向量只有一个,因此A不可相似对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/kDN4777K
0
考研数学二
相关试题推荐
求齐次方程组的基础解系.
说明下列事实的几何意义:(Ⅰ)函数f(x),g(x)在点x=x0处可导,且f(x0)=g(x0)f’(x0)=g’(x0);(Ⅱ)函数y=f(x)在点x=x0处连续,且有
设y=f(x)可导,且y’≠0.若y=f(x)二阶可导,则=________.
设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).
已知一条抛物线通过x轴上两点A(1,0),8(3,0),求证:两坐标轴与该抛物线所围成的面积等于x轴与该抛物线所围成的面积.
将f(x,y)dxdy化为累次积分,其中D为x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
设f(x)在x>0上有定义,且对任意正实数x,yf(xy)=xf(y)+yf(x),f’(1)=2,试求f(x).
(1997年试题,一)已知在x=0处连续,则a=_________.
用配方法化二次型f(x1,x2,x3)=x12+x2x3为标准二次型.
随机试题
李某怀孕期间到医院进行产前检查,此时医生如果发现一些情况存在,就会提出终止妊娠的医学意见,这些情况中不包括
头重如裹,周身困重,四肢酸懒沉重是感受何种外邪
关于我国宪法修改,下列哪一选项是正确的?(2014年卷一第22题,单选)
根据大连商品交易所规定,若在最后交易日后尚未平仓的合约持有者须以交割履约,买方会员须在()闭市前补齐与其交割月份合约持仓相对应的全额货款。
行政复议机关根据实际情况,决定撤销具体行政行为,或撤销部分具体行政行为的情形有()。
A公司是一个生产和销售通讯器材的股份公司。假设该公司适用的所得税税率为25%。对于明年的预算出现三种意见:方案一:维持目前的生产和财务政策。预计销售45000件,售价为240元/件,单位变动成本为200元,固定成本为120万元。公司的资本结构为负债400
民初政党林立,其中进步党是由几个党派合并而成的,其中不包括()。
“和平统一、一国两制”的前提、发展两岸关系和实现和平统一的基础是()
Mr.Smith,apassengeronthetranscontinentaltrain,appearedbeforethejudge.Apoliceofficerclaimedhehadattemptedto【
PaulJohnson’sAHistoryOfTheAmericanPeopleiswhatwehavecometoexpectfromthisproductivewriter—clear,colorfulnarra
最新回复
(
0
)