首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征方程有一个二重根,求a的值。并讨论A是否可相似对角化。
设矩阵A=的特征方程有一个二重根,求a的值。并讨论A是否可相似对角化。
admin
2019-08-01
30
问题
设矩阵A=
的特征方程有一个二重根,求a的值。并讨论A是否可相似对角化。
选项
答案
A的特征多项式为 [*] 若λ=2是特征方程的二重根时,有2
2
一16+18+3a=0,解得a=一2。 当a=一2时,A的特征值为2,2,6,矩阵2E一A=[*]的秩为1,故λ=2对应的线性无关的特征向量有两个,因此A可相似对角化。 若λ=2不是特征方程的二重根,则λ
2
一8λ+18+3a为完全平方式,从而18+3a=16,解得 a=[*]。 当a=[*]时,A的特征值为2,4,4,矩阵4E—A=[*]秩为2,故λ=4对应的线性无关的特征向量只有一个,因此A不可相似对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/kDN4777K
0
考研数学二
相关试题推荐
设A=①a,b取什么值时存在矩阵X,满足AX-AX=B?②求满足AX-AX=B的矩阵X的一般形式.
设齐次方程组(Ⅰ)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
求下列函数的导数与微分:(Ⅰ)设y=,求dy;(Ⅱ)设y=,求y’与y’(1).
设函数f(x)在x=x0处存在f’+(x0)与f’-(x0),但f’+(x0)≠f’-(x0),说明这一事实的几何意义.
曲线(x-1)3=2上点(5,8)处的切线方程是_______.
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2.(1)求A的特征值.(2)当实数后满足什么条件时A+kE正定?
已知A=,a是一个实数.(1)求作可逆矩阵U,使得U-1AU是对角矩阵.(2)计算|A-E|.
(2004年试题,三(5))设e
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=χ12+2χ22-5χ32+2χ1χ2-2χ1χ3+2χ2χ3.
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=χ12+2χ22-5χ32+2χ1χ2-2χ1χ3+2χ2χ3.
随机试题
量、本、利分析法:
学校体育的根本任务是()
A.地机B.阴郄C.郄门D.孔最手太阴肺经郄穴
下述热源中可以熔化高熔合金的是
系统性红斑狼疮何系统损害提示病重预后差
甲为显示自己是本地“人们惹不起的人”,一日装作喝醉酒,在附近街道上开车横冲直撞制造事端,拦截、辱骂、殴打本地多人,其中致一人重伤,一人死亡。则()。
采取诉讼财产保全须符合的条件不包括( )。
Sincemanydisadvantagedindividualsviewtheirsituationsasimmutableaswellasintolerable,theirattitudesarebestdescrib
Physicistsaren’toftenreprimandedforusingrisquehumorintheiracademicwritings,butin1991thatisexactlywhathappened
A、Inacoupleofdays.B、Rightaway.C、Intwomonths.D、Earlynextmonth.DQ:Whencanthewomanstarttoworkifshegetsthejo
最新回复
(
0
)