首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年试题,十二)已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2β3,β4,卢4也是.Ax=0的一个基础解系.
(2001年试题,十二)已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2β3,β4,卢4也是.Ax=0的一个基础解系.
admin
2013-12-18
108
问题
(2001年试题,十二)已知α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+tα
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
β
3
,β
4
,卢4也是.Ax=0的一个基础解系.
选项
答案
本题考查一个向量组成其为一个线性方程组的基础解系的充分必要条件,即该向量组的所有向量线性无关,且都是原方程组的解,同时该向量组中向量的个数等于原方程组的解空间的维数.由题设,α
1
,α
2
,α
3
,α
4
Ax是Ax=0的基础解系,则Ax=0的解空间维数是4,又β
1
,β
2
,β
3
,β
4
都是α
1
,α
2
,α
3
,α
4
的线性组合,所以β
1
,β
2
,β
3
,β
4
,Ax都是Ax=0的解,至此只需讨论β
1
,β
2
,β
3
,β
4
是否线性无关即可.设k
1
β
1
+k
2
β
2
+k
3
β
3
+k
4
β
4
=0.(1)将题设中β
i
的表达式代入式(1)并化简得(k
1
+tk
4
)α
1
+(k
2
+tk
1
)α
2
+(k
3
+tk
2
)α
3
+(k
4
+tk
3
)α
4
=0,已知α
1
,α
2
,α
3
,α
4
线性无关,因此有[*](2)记方程组(2)的系数行列式为B,则[*]因此β
1
,β
2
,β
3
,β
4
为Ax=0的一个基础解系的充要条件是β
1
,β
2
,β
3
,β
4
线性无关,也即(2)只有零解,即B≠0,所以当1一t
4
≠0,即t≠±1时满足条件.
解析
本题考查基础解系的问题,设η
1
,η
2
,……η
t
是Ax=0的基础解系,即η
1
,η
2
,……η
t
是Ax=0的解,并且η
1
,η
2
,……η
t
线性无关,Ax=0的任一解都可由η
1
,η
2
,……η
t
线性表出,则k
1
η
1
,k
2
η
2
,……k
t
η
t
是Ax=0的通解,其中k
1
,k
2
,……k
t
基础解系中解向量的个数是n—rA,且n—rA也是每个解.
转载请注明原文地址:https://kaotiyun.com/show/V934777K
0
考研数学二
相关试题推荐
(08年)设函数f连续,若F(u,v)=,其中区域Duv为图中阴影部分,则=【】
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)一f(A)=f’(ξ)(b一a).Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(
(13年)设二次型f(χ1,χ2,χ3)=2(a1χ2+aχ2χ2+a3χ3)2+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
设(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(00年)设函数f(χ)在[0,π]上连续,且∫0πf(χ)dχ=0,∫0πf(χ)cosχdχ=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
[2012年]设连续函数z=f(x,y)满足则dz|(0,1)=__________.
[2004年]设n阶矩阵A与B等价,则必有().
(91年)曲线y=
[2008年]设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记求E(T)(原题为证明T是μ2的无偏估计量);
随机试题
A.高压蒸汽灭菌法B.紫外线照射法C.巴氏消毒法D.滤过除菌法E.干烤法常用于手术器械的灭菌()
国际公众关系
百合固金汤治疗的病证是麻杏石甘汤治疗的病证是
以下不属于资产管理特征的是()。
企业委托外单位加工物资的成本包括加工中实际耗用物资的成本、支付的加工费及应负担的运杂费、支付的水费等。()
政府的功能是满足群众的真正需要,除非政府知道那些需要是什么,否则政府就无法满足那些需要。言论自由能确保政府官员听到这样的需求信息。因此,对一个健康的国家来说,言论自由是必不可少的。下面哪一项如果正确,不能削弱上述结论?()
设A为3阶矩阵,α1,α2,α3为三维列向量,其中α3为非零向量,且满足Aα1=α1-α2,Aα2=α2-α3,Aα3=α3.(Ⅰ)证明:向量组α1,α2,α3线性无关;(Ⅱ)证明:矩阵A不可相似对角化.
WhichofthefollowingdescriptionsaboutJudoisINCORRECT?
Itisnot______muchthelanguageasthebackgroundthatmakesthebookdifficulttounderstand.
Colorsaresometimescalledhot,cold,orneutral(中性的).Redandyellowaresaidtobehotcolorsbecausetheymakearoomwarme
最新回复
(
0
)