首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x2x3在正交变换x=Qy下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x2x3在正交变换x=Qy下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
admin
2021-01-25
52
问题
设二次型f(x
1
,x
2
,x
3
)=2x
1
2
-x
2
2
+ax
3
2
+2x
1
x
2
-8x
1
x
3
+2x
2
x
3
在正交变换x=Qy下的标准形为λ
1
y
1
2
+λ
2
y
2
2
,求a的值及一个正交矩阵Q.
选项
答案
二次型f(x
1
,x
2
,x
3
)的矩阵为 [*] 由题设知Q
-1
AQ=Q
T
AQ [*] A的一个特征值为零,所以有 [*] 故得a=2.由A的特征方程 [*] =(λ-6)(λ+3)λ=0 得A的全部特征值,不妨设λ
1
=6,λ
2
=-3,λ
3
=0, 对于λ
1
=6,解方程组(6I-A)x=0,对应的单位特征向量可取为ξ
1
=[*](1,0,-1)
T
; 对于λ
2
=-3,解方程组(-3I-A)x=0,对应的单位特征向量可取为ξ
2
=[*](1,-1,1)
T
; 对于λ
3
=0,解方程组Ax=0,对应的单位特征向量可取为ξ
3
=[*](1,2,1)
T
. 因此,所求的正交矩阵可取为 Q=(ξ
1
,ξ
2
,ξ
3
) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/eAx4777K
0
考研数学三
相关试题推荐
设矩阵A=,矩阵B满足AB+B+A+2E=0,则|B+E|=()
设常数λ>0,且级数
设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是()
设函数f(x)连续,且f’(0)>0,则存在δ>0,使得()
[2009年]设X1,X2,…,Xn是来自二项分布总体B(n,P)的简单随机样本,[*]和S2分别为样本均值和样本方差.记统计量[*]则E(T)=___________.
[2008年]设则在实数域上与A合同的矩阵为().
[2010年]设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度.若为概率密度,则a,b应满足().
计算反常二重积分,D是第一象限内,且位于曲线y=4x2和y=9x2之间的区域。
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,该
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b)其中a、b满足条件0≤a≤b≤a+b≤c.
随机试题
传感器一般由敏感元件、转换元件和()三部分组成。
中年男性,主诉全口牙酸痛,牙合面磨平,咀嚼无力,有耳部疼痛,来院就诊。检查:面下1/3短,牙列完整,全口牙广泛过度磨耗并超过生理范围。牙合面探硬,无变色,多处过敏点,咀嚼肌及关节有压痛,偶有关节弹响。除上述已有的检查外,重点补充检查
建设工程监理单位的服务对象是( )。
国有企业改造为公司制企业时,在评估基准日与建账日之间可能发生盈亏。下列各企业中,应享有或承担此盈亏的是()。
下面属于无效合同的是()。
Whatisyourfavoritecolor?Doyoulikeyellow,orangeorred?Ifyoudo,youmustbeanoptimist,aleader,anactivepemonwhoenjo
inversion
radionavigation
设矩阵Am×n,r(A)=m<n,Em为m阶单位矩阵,下述结论中正确的是().
在数据管理技术发展的三个阶段中,数据共享最好的是
最新回复
(
0
)