首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=χiχj. (1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…,χn)写成矩阵形式,并证
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=χiχj. (1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…,χn)写成矩阵形式,并证
admin
2016-06-30
59
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(χ
1
,χ
2
,…,χ
n
)=
χ
i
χ
j
.
(1)记X=(χ
1
,χ
2
,…,χ
n
)
T
,把f(χ
1
,χ
2
,…,χ
n
)写成矩阵形式,并证明二次型f(X)的矩阵为A
-1
;
(2)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
[*] 因秩(A)=n,故A可逆,A
-1
=[*]A
*
,从而(A
-1
)
T
=(A
T
)
-1
=A
-1
,故A
-1
也是实对称矩阵,因此二次型f(X)的矩阵为 [*] (2)因为(A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
,所以A与A
-1
合同,于是g(X)与f(X)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/V9t4777K
0
考研数学二
相关试题推荐
设f(x)=求f(x)的间断点并判断其类型.
=________.
设总体X服从正态分布N(μ,σ2)(σ>0).从该总体中抽取简单随机样本X1,X2,…,X2n(n>2).
设随机变量(X,Y)的联合密度函数为求P(X>2Y);
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).求Y的边缘密度函数.
讨论在(0,0)点的连续性。
设函数S(x)=∫0x|cost|dt当n为正整数时,且nπ≤x<(n+1)π时,证明:2n≤S(x)<2(n+1).
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.
已知函数y=y(x)在任意点x处的增量,且当Δx→0时,a是Δx的高阶无穷小,y(0)=π,则y(1)=________。
设A为n阶方阵,A*为A的伴随矩阵,且A11≠0,证明:方程组Ax=b(b≠0)有无穷多解的充要条件中b为A*x=0的解.
随机试题
A.巯基酶失活B.细胞色素氧化酶失活C.胆碱酯酶失活D.二氢叶酸还原酶失活E.环化酶失活有机磷中毒的机制是可使
A.副作用B.毒性反应C.停药反应D.后遗反应E.变态反应
县级以上人民政府建设行政主管部门和有关部门履行监督检查职责时,有权采取的措施不包括( )。
风险控制措施计划在实施前宜进行评审,评审主要包括()。
A保险公司2009年资产总额300亿元,负债总额225亿元,所有者权益75亿元。当年保费收入230亿元,费用支出20亿元,利润总额10亿元,所得税3.33亿元。它的资产负债率和净资产利润率分别是()。
女性,52岁,高中文化,已婚,退休工人。主诉:失眠,情绪低落2个月,伴有轻生念头两周。(由丈夫和弟弟陪来。)自述:我退休快一年了,开始感觉还好。后来就觉得无聊,烦躁。总想打电话给丈夫又怕影响他工作,儿子在大学读研究生也很忙。晚上睡不着,经常
左图为给定的多面体,从任一角度观看,下面哪一项不可能是该多面体的视图?
政府应该实施一条法案来禁止在通勤火车上销售和饮用酒精饮料。最近,政府运用其法律权力,通过了一条禁止在通勤火车上抽烟,来保护上下班人的健康的法律。当喝醉了酒的乘客下了火车,钻进他们的汽车后开车,公众面临的危险与火车上不抽烟的乘客被迫呼吸香烟的烟尘所面临的危险
设有关系模式R(A,B,C,D),其函数依赖集为F={A->D,B->D,C->D}。如果将R分解为R1(A,B,C)和R2(C,D),则该分解是()。
Asagirl,LouiseBethuneshowedgreatpromise(前途)inplanninghousesandvariousotherstructures.Asanadult,shewas【K1】___
最新回复
(
0
)