首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=χiχj. (1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…,χn)写成矩阵形式,并证
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=χiχj. (1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…,χn)写成矩阵形式,并证
admin
2016-06-30
43
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(χ
1
,χ
2
,…,χ
n
)=
χ
i
χ
j
.
(1)记X=(χ
1
,χ
2
,…,χ
n
)
T
,把f(χ
1
,χ
2
,…,χ
n
)写成矩阵形式,并证明二次型f(X)的矩阵为A
-1
;
(2)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
[*] 因秩(A)=n,故A可逆,A
-1
=[*]A
*
,从而(A
-1
)
T
=(A
T
)
-1
=A
-1
,故A
-1
也是实对称矩阵,因此二次型f(X)的矩阵为 [*] (2)因为(A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
,所以A与A
-1
合同,于是g(X)与f(X)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/V9t4777K
0
考研数学二
相关试题推荐
求极限
=________.
设事件A,B互不相容,且0<P(A)<1,则有().
设总体X的概率分布为θ(0<θ<1/2)是未知参数,用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.
设二维随机变量(X,Y)的联合密度函数为(1)求随机变量X,Y的边缘密度函数;(2)判断随机变量X,Y是否相互独立;(3)求随机变量Z=X+2Y的分布函数和密度函数.
设随机变量X,Y相互独立,它们的分布函数为FX(x),FY(y),则Z=max{X,Y}的分布函数为().
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0.
当x→0时,-1与xsinx是等价无穷小,则a=________.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(,0).试求曲线L的方程。
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
随机试题
纵向层次结构的中层负责
关于侵袭性胸腺瘤的描述,错误的是
一护士未给病人做青霉素过敏试验就给予青霉素注射,结果病人死亡。这属于医疗事故。()
我国进入社会主义初级阶段的标志是()。
二审法院根据当事人上诉和案件审理情况,对上诉案件作出相应裁判。下列哪一选项是正确的?(2011年·卷三·44题)
按照法院的辖区和民事案件隶属关系,划分同级法院受理第一审民事案件的分工和权限称之为()。
纳税人使用的土地不属于同一省、自治区、直辖市管辖的,由纳税人向机构所在地主管税务机关缴纳城镇土地使用税。()
我国《宪法》规定,国家建立健全同()发展水平相适应的社会保障水平。
下列选项中,合法的C语言关键字是______。
Now,aboutFranceinWorldWarn.Inthisperiodoftime,ominous【T1】______beganinGermanyandItaly.TheGermansreclaimedAl
最新回复
(
0
)