首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年]设函数f(x)连续且恒大于零, 其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}. 证明当t>0时,F(t)>(2/π)G(t).
[2003年]设函数f(x)连续且恒大于零, 其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}. 证明当t>0时,F(t)>(2/π)G(t).
admin
2019-04-08
55
问题
[2003年]设函数f(x)连续且恒大于零,
其中Ω(t)={(x,y,z)|x
2
+y
2
+z
2
≤t
2
},D(t)={(x,y)|x
2
+y
2
≤t
2
}.
证明当t>0时,F(t)>(2/π)G(t).
选项
答案
F(t)一[*]=2{∫
0
t
f(r
2
)r
2
dr∫
0
t
f(r
2
)dr—[∫
0
t
f(r
2
)rdr]
2
}/[∫
0
1
f(r
2
)dr∫
0
1
rf(r
2
)dr]. 令g(t)=∫
0
t
f(r
2
)r
2
dr∫
0
t
f(r
2
)dr一[∫
0
t
rf(r
2
)dr]
2
,则g(0)=0.又因f(x)恒大于零,有 g’(t)=f(t
2
)t
2
∫
0
t
f(r
2
)dr+f(t
2
)∫
0
t
f(r
2
)r
2
dr一2f(t
2
)t∫
0
t
f(r
2
)rdr =f(t
2
)[∫
0
t
f(t
2
)t
2
dr+∫
0
t
f(r
2
)r
2
dr—2∫
0
t
f(r
2
)rtdr] =f(t
2
)∫
0
t
f(t
2
)(t
2
一2rt+r
2
)dr =f(t
2
)∫
0
t
f(t
2
)(t一r)
2
dr>0. 故g(t)在(0,+∞)内单调增加,又g(0)=0,所以当t>0时有g(t)>0,又∫
0
t
f(r
2
)dr∫
0
1
rf(r
2
)dr>0,故当t>0时 [*] 即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/VD04777K
0
考研数学一
相关试题推荐
下列函数在x=0处不可导的是()
设A,B为满足AB=O的任意两个非零矩阵,则必有()
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。(Ⅰ)证明:r(A)=2;(Ⅱ)设β=α1+α2+α3,求方程组Ax=β的通解。
矩阵相似的充分必要条件为()
设线性方程组与方程x1+2x2+x3=a-1有公共解,求a的值及所有公共解。
已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A2x=3Ax-2A2x。(Ⅰ)记P=(x,Ax,A2x),求三阶矩阵B,使A=PBP-1;(Ⅱ)计算行列式|A+E|。
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1围成平面图形为D2.(1)求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
设f(x)具有连续的二阶导数,且
在椭圆x2+4y2=4上求一点,使其到直线2x+3y一6=0的距离最短。
求下列平面上曲线积分I=∫L[y2-2xysin(x2)]dx+cos(x2)dy,其中L为椭圆=1的右半部分,从A(0,-b)到B(0,b).
随机试题
A.门脉性肝硬化B.胆汁性肝硬化C.坏死后性肝硬化D.血吸虫性肝硬化结节大小相仿,假小叶大小不等见于
3周前刚注射过丙种球蛋白的儿童要注射麻疹疫苗应推迟
诊断张力性气胸最充分的根据是
某地区三种农副产品的收购资料如下表所示。请根据上述资料从下列备选答案中选出正确答案。拉氏指数与派氏指数()。
下列选项中,说法正确的是()。
下列各项中,属于评估战略可行性方法的有()。
甲公司与乙公司订立货物买卖合同,约定出卖人甲公司将货物送至丙公司,经丙公司验收合格后,乙公司应付清货款。甲公司在送货前发现丙公司已濒于破产,遂未按时送货。根据合同法律制度的规定,下列各项中,正确的是()。(2011年)
“岁寒三友”和“四君子”是中国古代器物、衣物和建筑上常用的装饰题材,其中都有的是()。
一、注意事项1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定资料1.2
某工作中你和老同事一块做,你觉得他的处理方法不对,提出来后,老同事一笑了之。你怎么办?
最新回复
(
0
)