首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2018-07-24
113
问题
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
设 F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1),x∈[0,1] 则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)一f’(x)g(1)=f’(x)[g(x)一g(1)] 由于x∈[0,1]时,f’(x)≥0,g’(0)≥0,因此F’(x)≤0,即F(x)在[0,1]上单调递减. 注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(1)g(1) 而 ∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t) =g(t)f(t)|
0
1
-∫
0
1
f(t)g’(t)dt =f(1)g(1)一∫
0
1
f(t)g’(t)dt 故F(1)=0. 因此x∈[0,1]时,F(x)≥0,由此可得对任何a∈[0,1]有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)dx
解析
转载请注明原文地址:https://kaotiyun.com/show/VQW4777K
0
考研数学三
相关试题推荐
设f(x)是不恒为零的奇函数,且f’(0)存在,则g(x)=().
求幂级数的和函数.
设an>0(n=1,2,…)且收敛,又0<k<,则级数().
求下列不定积分:
计算二重积分,其中积分区域D由直线y=-x,y=x,x=-1以及x=1围成.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)是连续函数.若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax一1).
(93年)设随机变量X的密度函数为φ(χ),且φ(-χ)-φ(χ),F(χ)为X的分布函数,则对任意实数a,有【】
设f(x)在x>0上有定义,对任意的正实数x,y,f(xy)=xf(y)+yf(x).f’(1)=2,试求f(x).
(2009年)=______.
随机试题
_______是一种影响和制约着组织的政策和行为的经营观念和管理哲学,它不仅指导着公共关系实务工作的健康发展,而且渗透到管理者日常行为的各个方面,成为引导、规范着组织行为的一种价值观念和行为准则。
曲线y=()
关于左上腔静脉描述,正确的是
A.6个月B.3~4个月后C.4~6个月D.1~3个月内E.7~10天甲亢加服复方碘溶液在术前
工期优化应优先选择()。
消防安全管理的主体包括()。
某公共建筑内设置喷头1000只,根据现行国家标准《自动喷水灭火系统施工及验收规范》(GB50261),对喷淋系统进行验收时,应对现场安装的喷头规格、安装间距分别进行抽查,分别抽查的喷头数量应为()。
下列关于银监会2012年颁布的《商业银行资本管理办法(试行)》的表述中,错误的有()。
论述杜威的教育思想。
EveryoneknowshowtogettoCarnegieHall:practice,practice,practice.Butwhatabouthowtogetintothenation’smosthonor
最新回复
(
0
)