首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2018-07-24
44
问题
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
设 F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1),x∈[0,1] 则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)一f’(x)g(1)=f’(x)[g(x)一g(1)] 由于x∈[0,1]时,f’(x)≥0,g’(0)≥0,因此F’(x)≤0,即F(x)在[0,1]上单调递减. 注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(1)g(1) 而 ∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t) =g(t)f(t)|
0
1
-∫
0
1
f(t)g’(t)dt =f(1)g(1)一∫
0
1
f(t)g’(t)dt 故F(1)=0. 因此x∈[0,1]时,F(x)≥0,由此可得对任何a∈[0,1]有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)dx
解析
转载请注明原文地址:https://kaotiyun.com/show/VQW4777K
0
考研数学三
相关试题推荐
求幂级数的收敛域.
设an>0(n=1,2,…)且收敛,又0<k<,则级数().
求下列不定积分:
设求a,b的值.
已知总体X与Y相互独立且都服从标准正态分布,X1,…,X8和Y1,…,Y9是分别来自总体X与Y的两个简单随机样本,其均值分别为,求证:服从参数为15的t分布.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
(2009年)设二维随机变量(X,Y)的概率密度为(Ⅰ)求条件概率密度fY|X(y|x);(Ⅱ)求条件概率P={X≤1|Y≤1}。
(1997年)设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ex一xz=0所确定,求
[2008年]求极限
(1992年)求连续函数f(x),使它满足f(x)+2∫0xf(t)dt=x2
随机试题
水力警铃与报警阀连接的管道,其管径应为20mm,总长不宜大于()m。
简述劳动保护用品种类及要求。
XXX,女,26岁,乳头及乳晕皮肤破裂,分泌脂水,结黄色痂,小儿吸吮时,痛如刀割,应选择的方剂是
患者,男,高处坠落后出现严重呼吸困难、四肢不能活动。查体:颈部压痛,四肢瘫痪,高热,有较重痰呜音。x线摄片提示:C4~C5骨折,合并脱位。应如何搬运患者
农林牧渔业总产值一般采用()计算。
在下列哪种情形中,甲构成不当得利()。
日本帝国主义全面侵华战争的标志事件是()。
人民法院审理行政案件,对( )的情形,可以判决变更。
若函数f(x)=在x=0处连续,则()
BluejeansareprobablythesinglemostrepresentativearticleofAmericanclothing.Theywereoriginally【C1】______byJacobDavi
最新回复
(
0
)