首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2018-07-24
105
问题
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
设 F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1),x∈[0,1] 则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)一f’(x)g(1)=f’(x)[g(x)一g(1)] 由于x∈[0,1]时,f’(x)≥0,g’(0)≥0,因此F’(x)≤0,即F(x)在[0,1]上单调递减. 注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(1)g(1) 而 ∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t) =g(t)f(t)|
0
1
-∫
0
1
f(t)g’(t)dt =f(1)g(1)一∫
0
1
f(t)g’(t)dt 故F(1)=0. 因此x∈[0,1]时,F(x)≥0,由此可得对任何a∈[0,1]有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)dx
解析
转载请注明原文地址:https://kaotiyun.com/show/VQW4777K
0
考研数学三
相关试题推荐
设f(x)连续,且F(x)=∫0x(x一2t)f(t)dt.证明:若f(x)单调不增,则F(x)单调不减.
验证y=x+满足微分方程(1一x)y’+y=1+x.
求下列极限:
求下列极限:
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表出.若线性方程组(Ⅰ)A1x=b1和(Ⅱ)A2x=b2都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A2,b2)的行向量组可以由(A1,b1)的行向量组线
设f(x)在点x=a处四阶可导,且f’(a)=f’’(a)=f’’’(a)=0,但f(4)(a)≠0.求证:当f(4)(a)>0时f(a)是f(x)的极小值;f(4)(a)<0时f(a)是f(x)的极大值.
计算二重积分,其中积分区域D由直线y=-x,y=x,x=-1以及x=1围成.
(93年)设随机变量X的密度函数为φ(χ),且φ(-χ)-φ(χ),F(χ)为X的分布函数,则对任意实数a,有【】
(2000年)求微分方程y"一2y’一e2x=0满足条件y(0)=0,y’(0)=1的解。
随机试题
A.pH7.30,PaCO264mmHg,BE+2mmol/LB.pH7.20,PaCO270mmHg,BE-5mmol/LC.pH7.45,PaCO260mmHg,BE+15mmol/LD.pH7.48,PaCO230mmHg,BE-8mmol/L
产生抗体的细胞是
A.血容量不足B.血容量轻度不足C.心功能不全,容量相对多D.容量血管收缩,肺循环阻力高E.心输出量低,容量血管过度收缩患者CVP低,血压正常,可能是()
患者腹部膨隆呈球形,转动体位时形状改变不明显,应首先考虑的是()
甲从县化肥供应站购进一批劣质化肥,致使当年一无所获。甲欲起诉县化肥供应站,下列哪些人可以作为甲的诉讼代理人?()
从国际上来看,委托指令有效期一般有当日有效与约定日有效两种。()
真理和谬误的区别在于()。
2015年1—10月,全国糖果产量275.15万吨,同比增长7.52%。从糖果生产地区分布情况看,产量比重仍集中在广东、福建等地区。其中广东所占比重最大,共生产59.38万吨,比上年同期增长23%;福建居第二位,产量59.3万吨,同比增长18.31%。
我国《宪法》规定,国家尊重和保障人权。当代中国人权是多数人的和全国人民的人权,()是首要的基本人权。
下列对南朝士族冲击最大的政治动乱是()。
最新回复
(
0
)