首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2018-07-24
68
问题
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
设 F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1),x∈[0,1] 则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)一f’(x)g(1)=f’(x)[g(x)一g(1)] 由于x∈[0,1]时,f’(x)≥0,g’(0)≥0,因此F’(x)≤0,即F(x)在[0,1]上单调递减. 注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(1)g(1) 而 ∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t) =g(t)f(t)|
0
1
-∫
0
1
f(t)g’(t)dt =f(1)g(1)一∫
0
1
f(t)g’(t)dt 故F(1)=0. 因此x∈[0,1]时,F(x)≥0,由此可得对任何a∈[0,1]有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)dx
解析
转载请注明原文地址:https://kaotiyun.com/show/VQW4777K
0
考研数学三
相关试题推荐
设f(x)是以T为周期的连续函数,且F(x)=∫0xf(t)dt+bx也是以T为周期的连续函数,则b=________.
设为发散的正项级数,令Sn=a1+a2+…+an(n=1,2,…).证明:收敛.
求下列不定积分:
求下列不定积分:
计算二重积分,其中D是由曲线y=ex与直线y=x+1在第一象限围成的无界区域.
(2008年)设f(x)是周期为2的连续函数。(I)证明对任意实数t,有∫tt+2f(x)dx=∫02f(x)dx;(Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数。
(2008年)微分方程xy’+y=0满足条件y(1)=1的解y=______。
(2000年)设对任意的x,总有φ(x)≤f(x)≤g(x),且()
(1997年)一商家销售某种商品的价格满足关系P=7—0.2x(万元/吨),x为销售量(单位:吨),商品的成本函数是C=3x+1(万元)1)若每销售一吨商品,政府要征税t(万元),求该商家获最大利润时的销售量;2)t为何值时,政府税收总额最
(1997年)从点P1(1,0)作x轴的垂线,交抛物线y=x2于点Q1(1,1);再从Q1作这条抛物线的切线与x轴交于P2.然后又从P2作x轴的垂线,交抛物线于Q2,依次重复上述过程得到一系列的点P1,Q1;P2,Q2;…;Pn,Qn;….(1)求;
随机试题
A.银翘散合麻杏石甘汤加减B.五虎场合葶苈大枣泻肺汤C.沙参麦冬汤D.人参五味子汤加减E.参附龙牡救逆汤肺炎风热闭肺证的治疗方剂为()
肝素的抗凝血作用机制是()。
会计凭证按其填制的程序和用途不同,可以分为()。
影响销售渠道选择的因素有()。
调解委员会调解与人民法院处理劳动争议的调解,其主要区别是()
教育的目的是社会需求的集中反映,它集中体现________。
1,3,6,(),15。
根据《中华人民共和国刑法修正案(九)》,下列说法正确的是()。
中世纪大学分为“先生大学”和“学生大学”,属于“学生大学”的是()
Whydoesthewomanneedthejob?
最新回复
(
0
)