首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
admin
2019-04-22
32
问题
设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
选项
答案
因f(a)=f(b),且f(x)不恒为常数,所以至少存在一点c∈(a,b),使f(c)≠f(a)=f(b). 不妨设f(c)>f(a),则在[a,c]上由拉格朗日中值定理,至少存在一点ξ∈(a,c)[*](a,b),使得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/VRV4777K
0
考研数学二
相关试题推荐
设f(x)在(x0-δ,x0+δ)有n阶连续导数,且f(k)(x0)=0,k=2,3,…,n-1;f(n)(x0)≠0.当0<|h|<δ时,f(x0+h)-f(x0)=hf’(x0+θh),(0<θ<1).求证:.
设f(x)在区间[0,1]上可微,当0≤x<1时,恒有0<f(1)<f(x),且f’(x)≠f(x).讨论在(0,1)内存在唯一的点ξ,使得f(ξ)=∫0ξf(t)dt.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1)求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小
设y=y(χ),z=z(χ)是由方程z=χf(χ+y)和F(χ,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求_______.
下列二次型中是正定二次型的是()
已知α1,α2是非齐次线性方程组Ax=b的两个不同的解,那么中,仍是线性方程组Ax=b特解的共有()
曲线y=(x一1)2(x一3)2的拐点个数为()
设二次型f(x1,x2,x3)=5x12+ax22+3x32-2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a的值;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
曲线y=的斜渐近线方程为_________。
随机试题
现金清查中,对于无法查明原因的现金短缺,经批准后应计入营业外支出。()
A.胰岛素B.胰高血糖素C.生长抑素D.胰淀粉酶E.促胃液素由胰岛B细胞分泌的物质是
拔牙时晕厥的处理下列哪项是不正确的
男性,42岁,二尖瓣狭窄10年。查体:脉搏99次/分,BP120/80mmHg,心率108次/分,心律绝对不齐。该患者最可能的心律失常是
在控制测试中,对选取的样本实施审计程序的下列说法中,不正确的是()。
2014年3月,习近平总书记在十二届全国人大二次会议安徽代表团参加审议时提出了“三严三实”,其中“三严”是指()。
下列不能作为质权标的的是()。
A、 B、 C、 D、 D
根据我国专利法的规定,申请发明和实用新型专利,申请人应当提交的文件包括()。
MeaninginLiteratureInreadingliteraryworks,weareconcernedwiththe’meaning’ofoneliterarypieceoranother.Howev
最新回复
(
0
)